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Unpinning the skyrmion lattice in MnSi; the effect of substitutional 

disorder 

C. Dhital1, 2*, L. DeBeer-Schmitt3, D. P. Young1 and J. F. DiTusa1** 

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, 

LA 70803 

2Department of Physics, Kennesaw State University, Marietta, GA, 30060 

3Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 

Abstract: 

By employing magnetization and small angle neutron scattering (SANS) 

measurements, we have investigated the behavior of the skyrmion lattice (SKL) and 

the helical order in MnSi0.992Ga0.008. Our results indicate that the order of the SKL is 

sensitive to the orientation of an applied magnetic field with respect to the crystal 

lattice and to variations in the sequence of small temperature and applied magnetic 

field changes. The disorder caused by the substitution of the heavier element Ga for 

Si is sufficient to reduce the pinning of the SKL to the underlying crystalline lattice, 

reducing the propensity for the SKL to be aligned with the crystal lattice. This 

tendency is most evident when the applied field is not well oriented with respect to 

the high symmetry axes of the crystal resulting in disorder in the long range SKL 

while maintaining sharp short range (radial) order. We have also investigated the 

effect of substituting heavier elements into MnSi on the reorientation process of the 

helical domains with field cycling in MnSi0.992Ga0.008 and Mn0.985Ir0.015Si. A 

comparison of the reorientation process in these materials with field reduction 

indicates that the substitution of heavier elements on either Mn or Si sites creates a 

higher energy barrier for the reorientation of the helical order and for the formation 

of domains. 

1. Introduction 

The antisymmetric interactions between magnetic moments allowed by the broken 

space inversion symmetry in non-centrosymmetric chiral materials, such as B20 

compounds, stabilize a topologically non-trivial spin texture known as a magnetic 

skyrmion lattice (SKL) [1-2]. The periodicity and chirality of the SKL, formed by 

the superposition of three helices, are determined primarily by the Dzyalloshinskii-

Moriya interaction (D) in combination with the uniform exchange interaction (J) [1-

3]. The winding number of these spin textures differentiates them from other trivial 
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magnetic textures such as bubbles thereby providing topological protection [2-4] 

making the SKL an ideal candidate for low power applications in novel spintronic 

and information storage devices [5-6]. These unique magnetic textures have been 

observed in several chiral structured magnets such as MnSi, FeGe, MnGe, 

Cu2OSeO3, Co-Mn-Zn, Fe1-xCoxSi, Mn1-xCoxSi, and Mn1-xFexSi [1,2,7-11]. The 

magnetic phase diagrams of these chiral magnets are qualitatively similar with a 

helimagnetic zero field ground state, a conical magnetic state at low applied field, a 

SKL or A-phase for moderate fields and temperatures approaching the critical point, 

and a high field polarized magnetic phase [1, 2, 8, 9,12,13,14]. However, many of 

the features, such as the size, chirality, orientation of the helices or the SKL, the 

magnetic transition temperature, TC, and the magnitude of the ordered moment vary 

widely and are all material specific [1,2,7,8,9,13,14]. 

The formation and orientation of the helices and skyrmion lattice are described by 

the Landau free energy functional of the form f=f0+fanisotropic .[1-3]. The first term f0 

contains isotropic terms and includes the contributions from uniform exchange 

interaction (J), the Dzyalloshinskii-Moriya interaction (D), and the Zeeman energy 

of the form H∙M [1,2]. This term, f0, where 

𝒇𝟎[𝑴] = ∫ 𝑑3𝑟(𝑟0𝑴𝟐 + 𝐽(𝛁𝑴)𝟐 + 𝟐𝐷𝑴 ∙ (𝛁 × 𝑴) + 𝑈𝑴𝟒 − 𝝁𝟎𝑯 ∙ 𝑴),                                        (1) 

is sufficient to describe the formation of a helical magnetic state with a wave vector 

Q~D/J.  Here, H is the external magnetic field and r0, J, D, U are phenomenological 

parameters with (U, J > 0). U is the mode coupling parameter and r0 represents the 

distance from the mean field magnetic transition temperature. The last term H∙M is 

the Zeeman energy in the presence of an external magnetic field with M the local 

magnetization. For MnSi, D>0, which gives a left (right) handed spiral for a left 

(right) handed crystal structure with wave vector Q=|Q|~D/J [1-3]. Although, the 

term f0 is sufficient to describe the formation of helical magnetic order, the 

orientation of the helix and a SKL with respect to the crystal lattice is governed by 

terms containing anisotropic interactions fanisotropic [1, 2, 3, 8, 15-18], with 

𝒇𝒂𝒏𝒊𝒔𝒐𝒕𝒓𝒐𝒑𝒊𝒄 =∈𝟏 (𝑸̂𝒙
𝟒 + 𝑸̂𝒚

𝟒 + 𝑸̂𝒛
𝟒) + 𝓞(𝛿4) +∈𝟐 (𝑸̂𝒙

𝟐𝑸̂𝒚
𝟒 + 𝑸̂𝒚

𝟐𝑸̂𝒛
𝟒 + 𝑸̂𝒛

𝟐𝑸̂𝒙
𝟒) + 𝓞 (𝛿

6
).                            (2)                                                              

The terms containing ∈𝟏 and ∈𝟐 vary as fourth and sixth order of the spin orbit 

interaction strength, , respectively since 𝐷 ∝ 𝛿. The other fourth order terms 𝒪(𝛿4) 

i.e. (𝑄̂𝑥
2𝑄̂𝑦

2 + cyclic terms)  are redundant. There are other sixth order terms 𝒪(𝛿6) 

i.e (𝑄̂𝑥
2𝑄̂𝑦

2𝑄̂𝑧
2) and 𝑄̂𝑥

6 + cyclic term𝑠), that preserve the C4 symmetry and are less 

important for a six fold symmetric SKL. The coefficients ∈𝟏  and ∈𝟐 represent the 
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strength of the magneto-crystalline anisotropy [1,2,3,8,16-18]. The orientation of the 

helix in zero field is determined by the fourth order term with coefficient ∈𝟏, and the 

orientation of the SKL is dictated by the sixth order term with coefficient ∈𝟐. For 

practical applications, details such as the size, chirality, orientation, TC, and 

magnitude of the ordered moment are all very important as they determine the 

necessary conditions for manipulating the SKL. For example, the potential that pins 

the SKL to a particular crystallographic orientation dictates the value of critical 

current required for translation [16, 19, 20]. Therefore, it is highly desirable to 

explore the behavior of these magnetic lattices under different physical and chemical 

environments in order to probe the mechanism responsible for material specific 

variations.  

Previous small angle neutron scattering (SANS) studies have indicated that the 

orientation of the helical ordering is along the [111] for MnSi [1,2], along either the 

[110] or [001] for Fe1-xCoxSi depending on x[8], and along the [001] for Cu2OSeO3 

[9]. Furthermore, the orientation of the helix in FeGe varies from the [111] to the 

[001] with temperature [10,14, 21,22]. It is not well understood why such variation 

occurs among these materials with same crystal environment and why it may be 

dependent on temperature and composition. These differences may originate in 

details such as the sign of ∈𝟏 and ∈𝟐, and the variation in the spin-orbit coupling 

strength. However, the orientation of the SKL closely follows the orientation of an 

applied magnetic field and displays significant temperature and magnetic field 

history dependence in the presence of disorder [17, 18,23]. Furthermore, SANS 

studies of MnSi have yielded the following observations about the orientation and 

the field and temperature history dependence of the SKL. 

1. The SKL pins preferentially along a [110] equivalent provided this direction 

lies close to the plane perpendicular to the magnetic field. If there are no [110] 

equivalents close to this plane, then the SKL tends to pin along a [100] [1]. 

2. When more than one [110] equivalent crystallographic direction is available 

in the plane perpendicular to the magnetic field, multiple domains of the SKL 

can form [1,17].            

3. The reorientation of the helical lattice upon field cycling or rotation in a 

magnetic field is elastic. That is, there is a tendency for the helical state to 

form domains along all equivalent [111] directions following a field cycling 

into the field polarized state [18]. 

However, the following questions have not been addressed. 
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1. What is the orientation of the SKL when both [110] and [001] directions are 

absent in the plane perpendicular to the magnetic field and how does the SKL 

respond to a sequence of field and temperature variations in this case? 

2. What changes occur to the long range (orientational) order of the SKL and the 

helical order due to substitutional disorder sufficient to significantly modify 

TC? 

3. What effect does substitutional disorder have on the elasticity of magnetic 

domains, does it depend on which of the two lattice sites is disordered, and 

what is the cause for domain formation in helimagnets?  

The answers to these questions are important for developing an understanding of the 

mesoscopic properties of the SKL and for future practical applications in spintronics. 

In addition, the answers will provide insight into the effect of heavy impurity atoms 

on the formation, orientation and reorientation process of SKL and helices in the 

presence of disturbing fields, or temperature variations. 

To address these questions, we have performed detailed magnetization and small 

angle neutron scattering (SANS) measurements of MnSi0.992Ga0.008 single crystals.  

The effect of variations of the temperature, field magnitude, and field orientation, 

and their history dependencies, on the magnetic structure was explored. The Ga 

substitution results in an expansion of the crystal lattice sufficient to raise the TC by 

5 K [25]. Our observations indicate that the pinning of the helix along a [111] 

direction (easy axis) remains robust to the disorder induced by the Ga substitution, 

whereas the orientation of the SKL can be more easily manipulated. The orientation 

of the SKL can switch easily from aligning with a [110] to a [100] (hard axis) 

direction by varying the field or changing the thermal history. We find that in the 

case where neither a [110] or [100] direction are adjacent to the plane perpendicular 

to the magnetic field, a ring of scattering appears on the detector instead of the iconic 

hexagonal scattering pattern of the prototypical skyrmion lattice. This indicates 

either an orientational disorder of the skyrmions, the presence of a large number of 

randomly oriented SKL domains, or the existence of labyrinth domains [24] 

whenever the field is not within 10 degrees of perpendicular to a high symmetry 

direction of the crystal.  

In addition, we have probed the effect of heavy element substitution into MnSi on 

the elasticity of the helical ordering in MnSi0.992Ga0.008 [25] and Mn0.985Ir0.015Si [26] 

single crystals. Within the time scale of our measurement, the orientation of the 

helical state recovers (along the equivalent [111] directions) after field cycling with 
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a decreased intensity for MnSi0.992Ga0.008. In contrast, we observe no evidence for 

such recovery in the case of Mn0.985Ir0.015Si. This indicates that the elasticity of 

helical lattice reorientation decreases with substitution of heavier elements on either 

lattice site, perhaps due to the strength of the disorder and/or the expected increase 

in spin orbit coupling. 

2. Experimental Details 

I.  Crystal growth and magnetic characterization.  

Single crystals of MnSi0.992Ga0.008 were grown using Ga flux as described in Ref. 

[27]. The resulting crystals were pyramidal shaped having a mass of up to 70 mg. 

Single crystals of Mn0.985Ir0.015Si were grown via a modified Bridgeman technique. 

The chemical composition of these crystals was determined using Wavelength 

Dispersive Spectroscopy (WDS). The obtained crystals were single phase crystals 

having the cubic B20 crystal structure as determined from single crystal and powder 

X-ray diffraction. We have also confirmed that the MnSi0.992Ga0.008 crystal used in 

the SANS experiments presented in this paper was single domain via measurements 

performed on HB3A, a four-circle neutron diffractometer at the High Flux Isotope 

Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). For MnSi0.992Ga0.008, 

the Ga substitution increases the lattice constant by ~ 0.1% creating negative 

chemical pressure thereby increasing TC and modifying the bulk magnetic behavior 

[25]. The residual resistivity ratio of these crystals was approximately 60 as reported 

in Ref. [25]. Whereas for Ir substitution, we observe a systematic decrease of TC 

along with an increase in Q [26]. ac and dc magnetization measurements were 

carried out in a Quantum Design 7-T Magnetic Property Measurement System 

(MPMS) superconducting quantum interference device (SQUID) magnetometer. ac 

susceptibility (χ’ and χ’’)  was measured by applying an ac signal on top of the dc 

magnetic field. More details of the magnetic properties of these samples are 

presented in our previous publications [25,26]. 

 

II. Small angle Neutron scattering (SANS). 

SANS measurements were carried out at the GP-SANS beamline at HFIR. All of the 

crystals were aligned such that the [-110] crystal direction was along the magnetic 

field which was oriented parallel to incident beam. In addition, the crystalline [111] 

direction was oriented nearly vertical such that it lies within the detector plane. The 

mean wavelength of incident neutrons employed was λ = 6 Å with Δλ/λ = 0.13 and 

a sample to detector distance of 11.3 m. The measurements were performed under a 

set of field and temperature sequences that are summarized in the figures and the 

movie in the supplementary information [28]. In addition, for MnSi0.992Ga0.008, a set 
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of measurements were performed after a rotation of the crystal about the vertical (the 

[111] direction) for angles between 0 and π/2 while keeping the field and beam 

directions constant. Slight variations of the [111] reflection as a function of rotation 

are indicative of a misalignment of the sample of a few degrees. Similar 

measurements were performed on a Mn0.985Ir0.015Si single crystal with the exception 

of crystal rotation experiments. 

3. Results 

I. Magnetic Properties. 

The dc and ac magnetization of a representative MnSi0.992Ga0.008 crystal are shown 

in Fig.1. Fig.1a displays a comparison of the magnetization divided by H (M/H) of 

MnSi and MnSi0.992Ga0.008 single crystals both measured at 1 kOe. The substitution 

of a small amount of Ga into MnSi has increased TC by ~5 K over that of nominally 

pure MnSi (TC~28.5 K) due to the negative chemical pressure created by the Ga 

substitution [25]. Furthermore, the sharpness of the temperature dependence of the 

magnetization at TC indicates the high quality of our flux grown MnSi0.992Ga0.008 

crystals. 
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Fig.1 ac and dc magnetization of MnSi0.992Ga0.008 (a) Temperature, T, dependence of the 

magnetization, M divided by the field, H, M/H, for MnSi and MnSi0.992Ga0.008 measured at H=1 

kOe. Inset: pyramidal shaped crystals grown using Ga flux. (b) Real part of the ac susceptibility, 

χ’, as function of magnetic field, H, and T. (c) Frequency, f,  dependence of ’ and the imaginary 

part of the ac susceptibility, ”,  at 32.5 K. (d) Orientation and field dependence of ’ and ” at 

32.5 K. A driving ac field of 2 Oe amplitude was applied during the ac susceptibility 

measurements. 

Fig. 1b presents the real part of the ac susceptibility, χ’, for different values of 

applied dc magnetic field applied along the [110] direction of the crystal. For a range 

of magnetic fields above 1 kOe, there is a dip in the ac susceptibility just below TC. 

The span of reduced susceptibility represents the field dependent extent of the SKL. 

Fig. 1c presents the frequency and magnetic field dependence of χ’ and the 

imaginary part of the ac susceptibility, χ”. Such variations of χ’and χ” are typical of 

all skyrmion hosting B20 compounds [2, 12, 26] and the changes evident indicate 

transitions to the different magnetic states that make up the phase diagram of MnSi. 

These states include the helical state at zero field with a continuous change to a 
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mulitdomain conical state for H<HC1, a single domain conical state for HC1<H<HA1, 

the SKL or A-phase for HA1<H<HA2, and a field polarized phase for H>HC2 [29]. 

There is some frequency dependence apparent at the boundary between the conical 

and SKL phase (HA1) with the magnitude of χ” decreasing from low to high 

frequency, while there is very little change with frequency to either ’ or ” at HA2. 

This behavior is typical of the response of large magnetic objects having a 

characteristic time scale in the range of the frequencies employed for the 

measurement (100’s of hertz) [2]. Fig. 1d presents the orientation dependence of χ’ 

and χ”. These are qualitatively similar for the two orientations displayed but with 

slightly different HC1 values apparent. 

II. Temperature and field history dependence of orientation of the SKL. 

We present the results from the SANS measurements in Fig. 2. In these 

measurements, the high symmetry crystallographic directions [111], [-1-11], [001] 

and [110] lie in the detector plane as they are perpendicular to both the incident beam 

(ki // [-110]) and H (ki // H) (see Fig. 2a). Here, the crystal orientation was held 

stationary and only T and H were varied between measurements. It is clear from the 

scattering pattern shown in Fig. 2a, that the helix orientation (along [111] and 

equivalent [-1-11]) and the magnitude of wave vector of the helix (Q ~ 0.037 Å-1) 

[30] remain unchanged from that found in nominally pure MnSi. However, as the 

remaining scattering patterns reveal, the orientational order of the SKL is very 

sensitive to temperature and field history and does not remain well registered to a 

particular crystallographic direction. This is substantially different from what was 

observed in MnSi [1]. An important observation is that there is only small variation 

in the translational order indicated by the FWHM along the radial direction. The 

skyrmion lattice wavevector, Q, as function of H and T is shown in Fig. 3 as well as 

in the supplementary materials [28]. Such a small variation in the radial peak 

position and FWHM is typical for MnSi near the phase boundary (in H and T) 

between the conical and SKL phases. 
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Fig. 2 Small angle neutron scattering (SANS) patterns from MnSi0.992Ga0.008.  (a) Scattering in 

zero magnetic field, H=0, such that the sample is in the helical state. Lines indicate several 

high symmetry crystallographic directions lying in the detector plane. (b) Summary of H and 

temperature, T, sequences for frames (c) – (j) which present the resulting scattering patterns. 

(k) Intensity scale. (l) Summary of H and T sequences for frames (m) – (p) which present the 

resulting scattering patterns. (q) Summary of H and T sequences for frames (r) – (v) which 

present the resulting scattering patterns. In (b) a constant field of 1.4 kOe was applied and T 

was increased from 31 K to 34 K. In (l) H = 1.4 kOe was applied at each T and returned to H=0 

after each measurement.  T was then increased by 0.5 K and H ramped back to 1.4 kOe.  In (q) 

a field of 1.4 kOe was applied and the sample cooled from 34 K to 31 K.  

We observe that the SKL order can be disrupted, with the scattering forming a ring 

like feature (see e.g. Fig, 2 n and s), rather than a well-ordered hexagonal pattern, 

depending upon the T and H history. In addition, for those T and H sequences that 

yield a well ordered hexagonal pattern indicative of the SKL, the lattice was found 

to align along either the [110] or [001] so that it appears that neither of these is 

substantially preferred. We conclude that the tendency for the SKL to orient along a 

specific crystallographic direction is reduced in MnSi0.992Ga0.008 compared to MnSi, 

but that the translational order is retained. The ring-like feature we observe for some 

sequences indicates that the orientational order becomes either multidegerate, a large 

number of SKL domains that are randomly oriented are nucleated, or that labyrinth 

magnetic domains are created [24]. The level of variation that we observe in the T 

and H history dependent scattering at 32.5+/-0.05 K (Fig. 2 g, o, and t) is surprising.  
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Fig.3 Results of SANS measurement: (a) Variation of full width at half maximum (FWHM) of the 

radial scans with magnetic field, H. Dashed line is the instrumental resolution (~0.0035 Å-1) (b) 

Variation of wave vector Q with magnetic field, H. For 0<H<1 kOe, MnSi0.992Ga0.008 has a conical 

magnetic order resulting in a loss of scattering intensity on the detector for our experimental 

geometry. Figs. (a) and (b) share the same symbols. 

III. Magnetic field orientation dependent skyrmion lattice orientation. 

In addition to probing the T and H history dependence of the helical and skyrmion 

states, we have also performed measurements to probe the field orientation 

dependence as presented in Fig. 4 and in the sequence of figures in the movie in 

supplementary materials [28]. For these experiments, we began with the crystal 

oriented similarly to the previous experiments with the crystalline [-110] direction 

and H aligned along the incident neutron beam and perpendicular to detector plane. 

The crystalline [-1-11] direction was aligned to be almost vertical whereas in Fig. 2 

the vertical direction was along [111]. With this arrangement the reflections 

associated with the crystalline [110], [001], and [111] directions initially lie in the 
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detector plane. The alignment was within 3o in both horizontal and vertical 

directions. The crystal was then rotated in the horizontal plane in 5o steps from =0 

to 90o, as demonstrated in Fig. 4a, such that the [-110] rotates into the detector plane 

after a 90o rotation. The magnetic field was ramped to zero after each measurement 

and prior to each crystal rotation and then reenergized to 1.4 kOe. 

 

Fig. 4: Field orientation dependence of the skyrmion lattice. SANS data taken as the 

MnSi0.992Ga0.008 crystal was rotated about its [-1-11] axis taken at T=32.2 K. (a) Intensity scale and 

schematic of experimental configuration. The red cylinder represents the crystal with three 

perpendicular axes identified. The crystal was rotated about the vertical axis which was parallel to 

the crystalline [-1-11] axis. (b) – (e) data taken in zero field, H=0. (f) Schematic showing the field 

and rotation angle, , sequence for the measurements presented in frames (g) – (j). H was ramped 

to zero during the rotation and energized prior to each measurement.  (g) – (j) dependence of the 

scattering with H=1.4 kOe, within the A-phase of MnSi0.992Ga0.008. , corresponds to the angle 

measured from the condition that the crystal [-110] direction was aligned parallel to the beam 

direction and to H. In all cases H was parallel to the incident beam and the [-1-11] direction of the 

crystal was vertical. The [001], [110] and [111] directions lie in the detector plane in frames (b) 

and (g). Data at a larger number of angles is presented in the sequence of images presented in the 

supplementary materials [28]. 

The top row of Fig. 4 displays the scattering at H=0 corresponding to the helical 

state where the crystalline [-1-11] direction is vertical and indicated by the scattering 

associated with the magnetic domain having Q along this direction. The [-1-11] 

remained in the detector plane throughout the experiment. Peaks associated with 

scattering along other [111] equivalent wave vectors progressively appear and 
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disappear as they fall close to the detector plane. The bottom row shows the variation 

of the scattering pattern at H=1.4 kOe where the sample is within the A-phase 

determined from the magnetic susceptibility data shown in Fig. 1 and confirmed to 

correspond to a SKL state in both Fig. 2 and Fig. 4. Interestingly, at a rotation angle 

of 0 the SKL aligns along the crystallographic [001] direction even though the [110] 

direction is also perpendicular to H, thus lying in the detector plane and indicated in 

Fig. 4b. At =30 o, the [101] reflection rotates into the detector plane and the SKL 

aligns along this high symmetry direction. Similarly, for a rotation angle of =90o, 

the [-110] direction rotates into the detector plane and the SKL aligns closely to this 

direction. Therefore, it appears as if the pinning toward particular crystalline axis is 

not robust since the SKL evolves so that it aligns to either a [100] (as in Fig. 4g) or 

a [110] (as in Fig. 4b and 4j) equivalent crystal axis as the crystal is rotated with 

respect to H. If, however, there are no [110] or [100] equivalent crystal axes close to 

being perpendicular to H (within ~10 degrees), a ring-like scattering pattern results 

(Fig. 4i). The ring-like structure indicates the lack of an orientationally ordered SKL 

with the retention of translational order. This is very different from the case of 

nominally pure MnSi where a six-fold pattern was observed in all cases even when 

H was applied in an arbitrary direction with respect to the crystal lattice [1, 31]. 

Furthermore, the radial width of the ring-like feature, which is well above 

instrumental resolution of ~ 0.0035 Å-1, remains nearly the same as that of the 

hexagonal six-fold patterns [supplementary figure S1[28] and Fig. 3a] indicating an 

unchanged translational order. In contrast, the azimuthal width continuously varies 

possibly indicating a change in the orientational order of the SKL with a rotation in 

the field. The small variation in radial width (Fig.3a) excludes the possibility of 

formation of a skyrmion glass phase [32].  

A comparison of the intensity integrated over Q from 0.028 Å-1<Q<0.043 Å-1
 as a 

function of azimuthal angle az is presented in Fig. 5 for both H=0 (Fig. 5a) and for 

H=1.4 kOe (Fig. 5b). Rotation of the crystal with H=0 probes the scattering from 

several different helical domains which are all found to be well aligned along a [111] 

equivalent crystal direction. In contrast, the orientational order of the A-phase varies 

dramatically with the orientation of H with respect to the crystalline lattice. The data 

shown with =60o displays a significant scattering intensity at all az demonstrating 

a lack of an ordered lattice of spin textures over the volume of the crystal indicating 

a strong field orientation dependence to the magnetic state.  
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Fig.5 Comparison of Q-integrated intensities for (a) zero magnetic field, H (helical state) and 

(b) H=1.4 kOe (A-phase) for different rotation angles, , of the crystal with respect to the 

neutron beam. az is the azimuthal angle in the detector plane. The intensities in both frames 

are normalized to the same standard monitor count. 

IV. Comparison to Mn1-xIrxSi. 

In MnSi it was reported that upon field cycling from H=0 to high field and then 

returning to zero field, there was little change to the scattering patterns or 

amplitudes [23, 33]. The lack of a history dependent scattering was interpreted in 

terms of the ease at which the helical domains re-form along each equivalent 

[111] crystallographic direction after orienting in a magnetic field. This is 

referred to as the elasticity of reorientation, which reflects the degree that a helical 

domain remains pinned to a particular [111] axis. We have measured the 

reorientation process of the helix associated with this elasticity in MnSi0.992Ga0.008 

and Mn0.985Ir0.015Si single crystals and compared it to that reported for nominally 

pure MnSi to probe the effect of heavy element substitution on the elasticity of 

reorientation. This comparison is shown in Fig. 6 where the intensity pattern for 

the helical state (H=0) in both the zero field cooled and field cooled (H=5 kOe // 

[-110]) conditions is presented for both crystals. It is clear that the peaks 

corresponding to the helical domain lying in the detector plane disappear 

completely for Mn0.985Ir0.015Si whereas those peaks reappear with decreased 

intensity but unchanged orientation for MnSi0.992Ga0.008. This demonstrates that 

the elasticity of reorientation of the helix is substantially reduced for Mn1-xIrxSi 

as compared to MnSi [18]. In addition, we present the scattering for these two 

samples in a field such that the A-phase is accessed. Figs. 6c and 6f compare the 

orientation of the SKL for the same orientation of the crystals and magnetic fields 
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after cooling in zero field. In this particular case, the SKL tends to align along 

the [110] for both Mn0.985Ir0.015Si and for MnSi0.992Ga0.008. However, as described 

above, the orientation of the SKL can switch easily between [001] or [110] for 

MnSi0.992Ga0.008. 

 

 

Fig. 6 Comparison of SANS data for MnSi0.992Ga0.008 (TC=33.5K) and Mn0.985Ir0.015Si (TC=23 K). 

Intensity pattern observed in helical state (T=4 K, H=0) after zero field cooling, ZFC, (a) for 

Mn0.985Ir0.015Si and (b) for MnSi0.992Ga0.008. Intensity pattern observed at T=4 K, H=0 after field 

cooling, FC, (c) for Mn0.985Ir0.015Si and (d) for MnSi0.992Ga0.008. Intensity pattern in the SKL state 

(e) for Mn0.985Ir0.015Si and (f) for MnSi0.992Ga0.008. Intensity scales are displayed in frames (c) and 

(d). 

4. Discussion 

The data we present here explores the role of disorder on the formation and 

orientation of helical and SKL states. Based on these data three important 



15 
 

conclusions can be drawn. First, impurities tend to pin helical domains so that field 

cycling does not return the domains to a state where they are equally distributed 

along all [111] equivalent directions. This is true for both the Ga and Ir substitution, 

although the effect appears to be stronger for the heavier, Ir, substitution which at a 

substitution level of less than twice that of our MnSi0.992Ga0.008 crystal results in a 

null signal above background for the helical domains perpendicular to H in Fig. 6c.   

This occurs despite the large difference in length scale between the helical 

wavelength and the atomic scale disorder introduced by the small density of 

substitutions employed in this work. Second, the SKL in the Ga-substituted system 

acts in a surprisingly contrasting manner to nominally pure MnSi, as the disorder 

tends to allow the SKL more freedom to align along different high symmetry 

directions in the crystal. Third, a disordered state results when the magnetic field is 

oriented such that there are no high symmetry [100] or [110] axes perpendicular to 

the field. The disordered A-phase state is somewhat mysterious since the SANS data 

alone (the ring-like scattering image) are insufficient to define the magnetic state of 

the system. As pointed out in previous studies [8,17, 23,24,32], the SANS data could 

be consistent with either a SKL with a wandering orientation as one moves along the 

magnetic field direction, a SKL with a very large number of randomly oriented 

domains such that the scattering resembles that of polycrystalline powder, or a 

labyrinth domain state where the winding number is not constant throughout the 

crystal.  

 

Fig. 7 Variation of HC1 for Mn1-xIrxSi (blue) and MnSi1-xGax (Red) at 4 K. 
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We are left with the question of how disorder leads to these changes in the SKL. One 

possibility is that the substitutions change the local spin-orbit coupling through a 

change in local electronic structure so that there is a random field acting on the 

system [34]. The other possibility is that the substitutions cause global change in 

magnitude and sign of ∈𝟏 and ∈𝟐 in Eq. 2 that is related to the magneto-crystalline 

anisotropy [16, 17]. These parameters are thought to determine the orientation of the 

SKL with respect to the crystal lattice as described in supplementary section of Ref 

[16]. Furthermore, the spin-orbit interaction is itself responsible for the magneto-

crystalline anisotropy causing the moments to align in a particular crystal direction 

[35].  It is interesting that the disorder created by Ga substitution allows the SKL to 

align with either the [110] or [001] directions almost interchangeably.  

The elasticity of the magnetic lattice depends on the reorientation process of 

magnetic domains, which involves a length scale much longer than the helical 

wavelength. In a typical ferromagnet, domains form and reform due to dipolar fields. 

The cause of formation and reorientation of domains in helimagnets such as MnSi is 

more complex and not well understood [36-39]. One possibility is that the presence 

of topological defects act as domain walls as was recently suggested for FeGe [40]. 

Comparing the reorientation process in MnSi0.992Ga0.008 and Mn0.985Ir0.015Si [Fig 6c-

6d], one would expect that the disorder associated with Ir likely creates a larger 

barrier for the reorientation of these domains. The progressive increase of HC1 as 

function of x in Mn1-xIrxSi (Fig. 7) in our previous investigation [25,26] also indicates 

the increase of the barrier potential. It is possible that the difference in the 

reorientation process of the magnetic states in MnSi0.992Ga0.008 and Mn0.985Ir0.015Si is 

kinetic in origin, relating to the motion of magnetic domains, resulting in a very 

sluggish return to a multiple domain case when the field is reduced to zero.  

To give a final perspective, although, a ring like feature most probably arising from 

multiple domain SKLs were observed in systems such as Cu2OSeO3, and (Fe,Co)Si, 

such a ring like feature was yet to be observed in MnSi  [8,17,18,41-46]. The 

previous observations of ring-like features were thought to be due to the presence of 

chemical disorder, as well as possible thermal and magnetic field gradients [8, 17, 

18, 41-46]. Our investigation shows that even in MnSi with a small level of 

substitutional disorder where we observe no measurable changes to the helical order, 

an orientationally disordered SKL can form depending upon the field history (size 

and orientation) and the temperature. The most likely cause is the increase in internal 

disorder and/or decreased magneto-crystalline anisotropy caused by the heavier 

elements substituted for either Si or Mn. Our study provides insight regarding the 
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temperature and field history dependence of the orientation and stability of a SKL 

in the presence of substitutional disorder. It is not clear at this point, why and how 

the domains form in helical magnets, how the disorder and topological defects such 

as dislocations interact with each other, and how these topological defects evolve 

with field and temperature. This work also establishes the effectiveness of local 

variations in the spin-orbit interaction to manipulate the SKL despite the difference 

in length scales between the SKL and the atomic level disorder. 

Note Added: It was brought to our attention that there are at least 3 related recent 

manuscripts that address the effect of disorder on the SKL and helical states of B20 

structured materials. This includes a SANS exploration of nominally pure MnSi with 

a rotation of the sample with respect the beam and magnetic field [47] and two papers 

exploring the effect of Fe and Co substitution in Mn1-xFexSi and Mn1-xCoxSi [48,49]. 
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Supplementary Materials. 

Unpinning the skyrmion lattice in MnSi; the effect of substitutional 

disorder 
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1 Department of Physics and Astronomy, Louisiana State University, 
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We present more a detailed account of the SANS experiments on MnSi0.992Ga0.008 

in Figure S1. This includes azimuthally integrated data to compare the Q 

dependence of the scattering as a function of temperature within in the A, or 

magnetic skyrmion lattice phase (Fig. S1a) to that in the helical phase at H=0 

(Fig. S1c).  We have also incorporated plots of the full-width-half-maximum of 

the Q-dependence (Fig. S1b) and the temperature dependence of the magnetic 

scattering intensity within the helical phase (Fig. S1d). A more complete 

presentation of the SANS data upon rotation of the crystal about the [-1-11] 

direction presented in Fig. 4 of the manuscript is included in the sequence of 

figures contained in Movie 1.  
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Fig. S1 Small angle neutron scattering on MnSi0.992Ga0.008 for magnetic field, H // ki // [-110]. (a) 

Azimuthally integrated intensity as function of wavevector, Q, at temperatures between 31 K and 

33 K for H=1.4 kOe. (b) Variation of intensity and full-width half-maximum, FWHM, as function 

of temperature, T, for H=1.4 kOe. (c) Azimuthally integrated intensity as function of Q at 

temperatures between 31.5 K and 33 K for H=0. (d) Variation of intensity of the helix at H=0 as 

function of temperature. 

Movie 1: Scattering pattern as function of rotation angle, ϕ, for helical phase at zero magnetic 

field, H, and the skyrmion lattice state (H=1.4 kOe) at T=32.2 K. Here ϕ represents the angle 

between incident beam and [-110] direction. ϕ =0 represents ki//H//[-110]. 
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