359 research outputs found
Active adjustment of the cervical spine during pitch production compensates for shape: The ArtiVarK study
The anterior lordosis of the cervical spine is thought to contribute to pitch (fo) production by influencing cricoid rotation as a function of larynx height. This study examines the matter of inter-individual variation in cervical spine shape and whether this has an influence on how fo is produced along increasing or decreasing scales, using the ArtiVarK dataset, which contains real-time MRI pitch production data. We find that the cervical spine actively participates in fo production, but the amount of displacement depends on individual shape. In general, anterior spine motion (tending toward cervical lordosis) occurs for low fo, while posterior movement (tending towards cervical kyphosis) occurs for high fo
From biology to language change and diversity
From biology to language change and diversit
Anatomical biasing of click learning and production: An MRI and 3d palate imaging study
The current paper presents results for data on click learning obtained from a larger imaging study (using MRI and 3D intraoral scanning) designed to quantify and characterize intra- and inter-population variation of vocal tract structures and the relation of this to speech production. The aim of the click study was to ascertain whether and to what extent vocal tract morphology influences (1) the ability to learn to produce clicks and (2) the productions of those that successfully learn to produce these sounds. The results indicate that the presence of an alveolar ridge certainly does not prevent an individual from learning to produce click sounds (1). However, the subtle details of how clicks are produced may indeed be driven by palate shape (2)
Weak biases emerging from vocal tract anatomy shape the repeated transmission of vowels
Linguistic diversity is affected by multiple factors, but it is usually assumed that variation in the anatomy of our speech organs plays no explanatory role. Here we use realistic computer models of the human speech organs to test whether inter-individual and inter-group variation in the shape of the hard palate (the bony roof of the mouth) affects acoustics of speech sounds. Based on 107 midsagittal MRI scans of the hard palate of human participants, we modelled with high accuracy the articulation of a set of five cross-linguistically representative vowels by agents learning to produce speech sounds. We found that different hard palate shapes result in subtle differences in the acoustics and articulatory strategies of the produced vowels, and that these individual-level speech idiosyncrasies are amplified by the repeated transmission of language across generations. Therefore, we suggest that, besides culture and environment, quantitative biological variation can be amplified, also influencing language
Erratum: “Seed layer technique for high quality epitaxial manganite films” [AIP Advances 6, 085109 (2016)]
No abstract available
Inverse Scattering for Gratings and Wave Guides
We consider the problem of unique identification of dielectric coefficients
for gratings and sound speeds for wave guides from scattering data. We prove
that the "propagating modes" given for all frequencies uniquely determine these
coefficients. The gratings may contain conductors as well as dielectrics and
the boundaries of the conductors are also determined by the propagating modes.Comment: 12 page
Causal correlations between genes and linguistic features: The mechanism of gradual language evolution
The causal correlations between human genetic variants and linguistic (typological) features could represent the mechanism required for gradual, accretionary models of language evolution. The causal link is mediated by the process of cultural transmission of language across generations in a population of genetically biased individuals. The particular case of Tone, ASPM and Microcephalin is discussed as an illustration. It is proposed that this type of genetically-influenced linguistic bias, coupled with a fundamental role for genetic and linguistic diversities, provides a better explanation for the evolution of language and linguistic universals
Ground state properties of ferromagnetic metal/conjugated polymer interfaces
We theoretically investigate the ground state properties of ferromagnetic
metal/conjugated polymer interfaces. The work is partially motivated by recent
experiments in which injection of spin polarized electrons from ferromagnetic
contacts into thin films of conjugated polymers was reported. We use a
one-dimensional nondegenerate Su-Schrieffer-Heeger (SSH) Hamiltonian to
describe the conjugated polymer and one-dimensional tight-binding models to
describe the ferromagnetic metal. We consider both a model for a conventional
ferromagnetic metal, in which there are no explicit structural degrees of
freedom, and a model for a half-metallic ferromagnetic colossal
magnetoresistance (CMR) oxide which has explicit structural degrees of freedom.
The Fermi energy of the magnetic metallic contact is adjusted to control the
degree of electron transfer into the polymer. We investigate electron charge
and spin transfer from the ferromagnetic metal to the organic polymer, and
structural relaxation near the interface. Bipolarons are the lowest energy
charge state in the bulk polymer for the nondegenerate SSH model Hamiltonian.
As a result electrons (or holes) transferred into the bulk of the polymer form
spinless bipolarons. However, there can be spin density in the polymer
localized near the interface.Comment: 7 figure
A Bayesian phylogenetic approach to estimating the stability of linguistic features and the genetic biasing of tone
Language is a hallmark of our species and understanding linguistic diversity is an area of major interest. Genetic factors influencing the cultural transmission of language provide a powerful and elegant explanation for aspects of the present day linguistic diversity and a window into the emergence and evolution of language. In particular, it has recently been proposed that linguistic tone—the usage of voice pitch to convey lexical and grammatical meaning—is biased by two genes involved in brain growth and development, ASPM and Microcephalin. This hypothesis predicts that tone is a stable characteristic of language because of its ‘genetic anchoring’. The present paper tests this prediction using a Bayesian phylogenetic framework applied to a large set of linguistic features and language families, using multiple software implementations, data codings, stability estimations, linguistic classifications and outgroup choices. The results of these different methods and datasets show a large agreement, suggesting that this approach produces reliable estimates of the stability of linguistic data. Moreover, linguistic tone is found to be stable across methods and datasets, providing suggestive support for the hypothesis of genetic influences on its distribution
- …
