1,401 research outputs found
Investigating the peculiar emission from the new VHE gamma-ray source H1722+119
The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed
the BL Lac object H1722+119 (redshift unknown) for six consecutive nights
between 2013 May 17 and 22, for a total of 12.5 h. The observations were
triggered by high activity in the optical band measured by the KVA (Kungliga
Vetenskapsakademien) telescope. The source was for the first time detected in
the very high energy (VHE, GeV) -ray band with a statistical
significance of 5.9 . The integral flux above 150 GeV is estimated to
be per cent of the Crab Nebula flux. We used contemporaneous
high energy (HE, 100 MeV GeV) -ray observations from
Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within
the framework of the current extragalactic background light models, we estimate
the redshift to be . Additionally, we used contemporaneous
X-ray to radio data collected by the instruments on board the Swift satellite,
the KVA, and the OVRO (Owens Valley Radio Observatory) telescope to study
multifrequency characteristics of the source. We found no significant temporal
variability of the flux in the HE and VHE bands. The flux in the optical and
radio wavebands, on the other hand, did vary with different patterns. The
spectral energy distribution (SED) of H1722+119 shows surprising behaviour in
the Hz frequency range. It can be modelled
using an inhomogeneous helical jet synchrotron self-Compton model.Comment: 12 pages, 5 figures, 2 table
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
MAGIC observations of MWC 656, the only known Be/BH system
Context: MWC 656 has recently been established as the first observationally
detected high-mass X-ray binary system containing a Be star and a black hole
(BH). The system has been associated with a gamma-ray flaring event detected by
the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656
gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays.
Methods. We have observed MWC 656 with the MAGIC telescopes for 23 hours
during two observation periods: between May and June 2012 and June 2013. During
the last period, observations were performed contemporaneously with X-ray
(XMM-Newton) and optical (STELLA) instruments. Results: We have not detected
the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either
of the two campaigns carried out. Upper limits (ULs) to the integral flux above
300 GeV have been set, as well as differential ULs at a level of 5% of
the Crab Nebula flux. The results obtained from the MAGIC observations do not
support persistent emission of very high energy gamma rays from this system at
a level of 2.4% the Crab flux.Comment: Accepted for publication in A&A. 5 pages, 2 figures, 2 table
Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes
Context. QSO B0218+357 is a gravitationally lensed blazar located at a
redshift of 0.944. The gravitational lensing splits the emitted radiation into
two components, spatially indistinguishable by gamma-ray instruments, but
separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a
violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes.
Aims. The spectral energy distribution of QSO B0218+357 can give information on
the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the
gamma-ray emission can also be used as a probe of the extragalactic background
light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during
the expected arrival time of the delayed component of the emission. The MAGIC
and Fermi-LAT observations were accompanied by quasi-simultaneous optical data
from the KVA telescope and X-ray observations by Swift-XRT. We construct a
multiwavelength spectral energy distribution of QSO B0218+357 and use it to
model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC,
are used to set constraints on the extragalactic background light. Results.
Very high energy gamma-ray emission was detected from the direction of QSO
B0218+357 by the MAGIC telescopes during the expected time of arrival of the
trailing component of the flare, making it the farthest very high energy
gamma-ray sources detected to date. The observed emission spans the energy
range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy
distribution of QSO B0218+357 is consistent with current extragalactic
background light models. The broad band emission can be modeled in the
framework of a two zone external Compton scenario, where the GeV emission comes
from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&
- …
