83 research outputs found

    Arterial blood pressure during early sepsis and outcome

    Get PDF
    OBJECTIVE: To evaluate the association between arterial blood pressure (ABP) during the first 24 h and mortality in sepsis. DESIGN: Retrospective cohort study. SETTING: Multidisciplinary intensive care unit (ICU). PATIENTS AND PARTICIPANTS: A total of 274 septic patients. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: Hemodynamic, and laboratory parameters were extracted from a PDMS database. The hourly time integral of ABP drops below clinically relevant systolic arterial pressure (SAP), mean arterial pressure (MAP), and mean perfusion pressure (MPP = MAP - central venous pressure) levels was calculated for the first 24 h after ICU admission and compared with 28-day-mortality. Binary and linear regression models (adjusted for SAPS II as a measure of disease severity), and a receiver operating characteristic (ROC) analysis were applied. The areas under the ROC curve were largest for the hourly time integrals of ABP drops below MAP 60 mmHg (0.779 vs. 0.764 for ABP drops below MAP 55 mmHg; P or = 60 mmHg may be as safe as higher MAP levels during the first 24 h of ICU therapy in septic patients. A higher MAP may be required to maintain kidney function

    Thoracic epidural analgesia: a new approach for the treatment of acute pancreatitis?

    Full text link
    This review article analyzes, through a nonsystematic approach, the pathophysiology of acute pancreatitis (AP) with a focus on the effects of thoracic epidural analgesia (TEA) on the disease. The benefit-risk balance is also discussed. AP has an overall mortality of 1 %, increasing to 30 % in its severe form. The systemic inflammation induces a strong activation of the sympathetic system, with a decrease in the blood flow supply to the gastrointestinal system that can lead to the development of pancreatic necrosis. The current treatment for severe AP is symptomatic and tries to correct the systemic inflammatory response syndrome or the multiorgan dysfunction. Besides the removal of gallstones in biliary pancreatitis, no satisfactory causal treatment exists. TEA is widely used, mainly for its analgesic effect. TEA also induces a targeted sympathectomy in the anesthetized region, which results in splanchnic vasodilatation and an improvement in local microcirculation. Increasing evidence shows benefits of TEA in animal AP: improved splanchnic and pancreatic perfusion, improved pancreatic microcirculation, reduced liver damage, and significantly reduced mortality. Until now, only few clinical studies have been performed on the use of TEA during AP with few available data regarding the effect of TEA on the splanchnic perfusion. Increasing evidence suggests that TEA is a safe procedure and could appear as a new treatment approach for human AP, based on the significant benefits observed in animal studies and safety of use for human. Further clinical studies are required to confirm the clinical benefits observed in animal studies

    Synthesis of the elements in stars: forty years of progress

    Full text link

    New test of modulated electron capture decay of hydrogen-like 142Pm ions: Precision measurement of purely exponential decay

    Get PDF
    An experiment addressing electron capture (EC) decay of hydrogen-like 142Pm60+ions has been conducted at the experimental storage ring (ESR) at GSI. The decay appears to be purely exponential and no modulations were observed. Decay times for about 9000 individual EC decays have been measured by applying the single-ion decay spectroscopy method. Both visually and automatically analysed data can be described by a single exponential decay with decay constants of 0.0126(7)s−1for automatic analysis and 0.0141(7)s−1for manual analysis. If a modulation superimposed on the exponential decay curve is assumed, the best fit gives a modulation amplitude of merely 0.019(15), which is compatible with zero and by 4.9 standard deviations smaller than in the original observation which had an amplitude of 0.23(4)

    Continuous thoracic epidural anesthesia improves gut mucosal microcirculation in rats with sepsis

    No full text
    Microcirculatory dysfunction contributes significantly to tissue hypoxia and multiple organ failure in sepsis. Ischemia of the gut and intestinal hypoxia are especially relevant for the evolution of sepsis because the mucosal barrier function may be impaired, leading to translocation of bacteria and toxins. Because sympathetic blockade enhances intestinal perfusion under physiologic conditions, we hypothesized that thoracic epidural anesthesia (TEA) may attenuate microcirculatory perturbations during sepsis. The present study was designed as a prospective and controlled laboratory experiment to assess the effects of continuous TEA on the mucosal microcirculation in a cecal ligation and perforation model of sepsis in rats. Anesthetized Sprague-Dawley rats underwent laparotomy and cecal ligation and perforation to induce sepsis. Subsequently, either bupivacaine 0.125% (n = 10) or isotonic sodium chloride solution (n = 9) was continuously infused via the thoracic epidural catheter for 24 h. In addition, a sham laparotomy was carried out in eight animals. Intravital videomicroscopy was then performed on six to ten villi of ileum mucosa. The capillary density was measured as areas encircled by perfused capillaries, that is, intercapillary areas. The TEA accomplished recruitment of microcirculatory units in the intestinal mucosa by decreasing total intercapillary areas (1,317 +/- 403 vs. 1,001 +/- 236 microm2) and continuously perfused intercapillary areas (1,937 +/- 512 vs. 1,311 +/- 678 microm2, each P < 0.05). Notably, TEA did not impair systemic hemodynamic variables beyond the changes caused by sepsis itself. Therefore, sympathetic blockade may represent a therapeutic option to treat impaired microcirculation in the gut mucosa resulting from sepsis. Additional studies are warranted to assess the microcirculatory effects of sympathetic blockade on other splanchnic organs in systemic inflammation
    • 

    corecore