541 research outputs found
Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?
Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10?MPa, corresponding to a depth of 0, 500 and 1000?m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10?MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10?MPa CO2 production per cell was not affected, cell integrity was preserved and PO43- uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential
Study of the bacterial community affiliated to Hyalesthes obsoletus, the insect vector of “bois noir” phytoplasma of grape
Grape yellows caused by phytoplasmas afflict several important wine-producing areas of Europe. A grape yellows with increasingincidence in European vineyards is “bois noir” (BN), caused by ‘Candidatus Phytoplasma solani’. Its vector is the planthopperHyalesthes obsoletus Signoret (Hemiptera Cixiidae), occasionally feeding on grapevine. An innovative strategy for reducing thediffusion of the disease could be symbiotic control, exploiting the action of symbiotic microorganisms of the insect host. To investigatethe occurrence of possible microbial candidates for symbiotic control we performed a molecular characterization of thebacteria associated to H. obsoletus. Length heterogeneity PCR was applied for a preliminary population screening. Taxonomicaffiliations of the bacterial species were analyzed by denaturing gradient gel electrophoresis, showing, within the microbial diversity,the intracellular reproductive parasite Wolbachia pipientis and a Bacteroidetes symbiont with 92% nt identity with ‘CandidatusSulcia muelleri’. PCR essays specific for these bacteria showed they co-localize in several organs of H. obsoletus. Fluorescentin situ hybridization was performed to assess the distribution of these microorganisms within the insect body, showing interestinglocalization patterns, particularly in insect gonads and salivary glands. These results could be a starting point for a deeper investigationof functions and relationships between microbial species
Comunità microbica associata a Hyalesthes obsoletus Signoret, vettore del Legno nero della vite
n.d
Disturbance of primary producer communities disrupts the thermal limits of the associated aquatic fauna
Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically-distant genera and orders
Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ-hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma, respectively. Cross colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed, respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicates that Asaia adopts body invasion mechanisms independent from the host biological characteristics. This versatility is an important property for the development of symbiont-based therapies of different vector-borne diseases
Dissolved oxygen in heterogeneous environments dictates the metabolic rate and thermal sensitivity of a tropical aquatic crab
Oxygen availability, together with water temperature, greatly varies in coastal habitats, especially in those characterized by elevated primary production. In this study, we investigate the combined role of dissolved oxygen and temperature on the thermal physiological response of the mud crab Thalamita crenata living in an equatorial system of coastal habitats. We sampled temperature, oxygen and salinity in T. crenata habitats, mangrove creeks and fringes and seagrass meadows, at Gazi Bay (Kenya). We found that seagrass meadows exhibited higher temperature and oxygen saturation than the mangrove habitats during the day, creating conditions of oxygen supersaturation. By investigating the effect of different levels of oxygen saturation on the thermal response of T. crenata, we demonstrated that the respiratory physiology of this ectotherm has a pronounced resistance to heat, directly influenced by the amount of dissolved oxygen in the water. Under low oxygen saturation levels, the mud crab significantly reduced its metabolism, becoming temperature-independent. This result shows that aquatic species can modulate their thermal response in a stringent dependency with water oxygen saturation, corroborating previous findings on the thermal response of T. crenata under supersaturation. This contribution provides further support for the need to adopt an ecologically-relevant approach to forecast the effect of climate change on marine ectotherrnal species
Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control
Background
Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.
To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach.
Methods
Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.
The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.
Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. Stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains.
Results
Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.
The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.
Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands.
Conclusions
We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules
The microbial landscape in bioturbated mangrove sediment: A resource for promoting nature-based solutions for mangroves
Globally, soils and sediments are affected by the bioturbation activities of benthic species. The consequences of these activities are particularly impactful in intertidal sediment, which is generally anoxic and nutrient-poor. Mangrove intertidal sediments are of particular interest because, as the most productive forests and one of the most important stores of blue carbon, they provide global-scale ecosystem services. The mangrove sediment microbiome is fundamental for ecosystem functioning, influencing the efficiency of nutrient cycling and the abundance and distribution of key biological elements. Redox reactions in bioturbated sediment can be extremely complex, with one reaction creating a cascade effect on the succession of respiration pathways. This facilitates the overlap of different respiratory metabolisms important in the element cycles of the mangrove sediment, including carbon, nitrogen, sulphur and iron cycles, among others. Considering that all ecological functions and services provided by mangrove environments involve microorganisms, this work reviews the microbial roles in nutrient cycling in relation to bioturbation by animals and plants, the main mangrove ecosystem engineers. We highlight the diversity of bioturbating organisms and explore the diversity, dynamics and functions of the sediment microbiome, considering both the impacts of bioturbation. Finally, we review the growing evidence that bioturbation, through altering the sediment microbiome and environment, determining a ‘halo effect’, can ameliorate conditions for plant growth, highlighting the potential of the mangrove microbiome as a nature-based solution to sustain mangrove development and support the role of this ecosystem to deliver essential ecological services
Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality
Background: The plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere. Methods: Bacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communities' recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems. Results: Richness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction between the root compartments and the rootstock exerted a unique selective pressure that enhanced niche differentiation, but rootstock-specific bacterial communities were still recruited with conserved PGP traits. Conclusion: While the rootstock significantly influences the taxonomy, structure and network properties of the bacterial community in grapevine roots, a homeostatic effect on the distribution of the predicted and potential functional PGP traits was found
Disturbance of primary producer communities disrupts the thermal limits of the associated aquatic fauna
Environmental fluctuation forms a framework of variability within which species have evolved. Environmental fluctuation includes predictability, such as diel cycles of aquatic oxygen fluctuation driven by primary producers. Oxygen availability and fluctuation shape the physiological responses of aquatic animals to warming, so that, in theory, oxygen fluctuation could influence their thermal ecology. We describe annual oxygen variability in agricultural drainage channels and show that disruption of oxygen fluctuation through dredging of plants reduces the thermal tolerance of freshwater animals. We compared the temperature responses of snails, amphipods, leeches and mussels exposed to either natural oxygen fluctuation or constant oxygen in situ under different acclimation periods. Oxygen saturation in channel water ranged from c. 0 % saturation at night to >300 % during the day. Temperature showed normal seasonal variation and was almost synchronous with daily oxygen fluctuation. A dredging event in 2020 dramatically reduced dissolved oxygen variability and the correlation between oxygen and temperature was lost. The tolerance of invertebrates to thermal stress was significantly lower when natural fluctuation in oxygen availability was reduced and decoupled from temperature. This highlights the importance of natural cycles of variability and the need to include finer scale effects, including indirect biological effects, in modelling the ecosystem-level consequences of climate change. Furthermore, restoration and management of primary producers in aquatic habitats could be important to improve the thermal protection of aquatic invertebrates and their resistance to environmental variation imposed by climate change
- …
