559 research outputs found

    Application of Silicon Carbide Chills in Controlling the Solidification Process of Casts Made of IN-713C Nickel Superalloy

    Get PDF
    The paper presents the method of manufacturing casts made of the IN-713C nickel superalloy using the wax lost investment castingprocess and silicon carbide chills. The authors designed experimental casts, the gating system and selected the chills material. Wax pattern,ceramic shell mould and experimental casts were prepared for the purposes of research. On the basis of the temperature distributionmeasurements, the kinetics of the solidification process was determined in the thickened part of the plate cast. This allowed to establish thequantity of phase transitions which occurred during cast cooling process and the approximate values of liquidus, eutectic, solidus andsolvus temperatures as well as the solidification time and the average value of cast cooling rate. Non-destructive testing and macroscopicanalysis were applied to determine the location and size of shrinkage defects. The authors present the mechanism of solidification andformation of shrinkage defects in casts with and without chills. It was found that the applied chills influence significantly the hot spots andthe remaining part of the cast. Their presence allows to create conditions for solidification of IN-713C nickel superalloy cast withoutshrinkage defects

    A tight lower bound for steiner orientation

    Get PDF
    In the STEINER ORIENTATION problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s⇝t path for each terminal pair (s,t)∈T. Arkin and Hassin [DAM’02] showed that the STEINER ORIENTATION problem is NP-complete. They also gave a polynomial time algorithm for the special case when k=2 . From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov [ESA’12, SIDMA’13] designed an XP algorithm running in nO(k) time for all k≄1. Pilipczuk and Wahlström [SODA ’16] showed that the STEINER ORIENTATION problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS’01] the STEINER ORIENTATION problem does not admit an f(k)⋅no(k/logk) algorithm for any computable function f. That is, the nO(k) algorithm of Cygan et al. is almost optimal. In this paper, we give a short and easy proof that the nO(k) algorithm of Cygan et al. is asymptotically optimal, even if the input graph has genus 1. Formally, we show that the STEINER ORIENTATION problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k)⋅no(k) time for any function f even if the underlying undirected graph has genus 1. We give a reduction from the GRID TILING problem which has turned out to be very useful in proving W[1]-hardness of several problems on planar graphs. As a result of our work, the main remaining open question is whether STEINER ORIENTATION admits the “square-root phenomenon” on planar graphs (graphs with genus 0): can one obtain an algorithm running in time f(k)⋅nO(k√) for PLANAR STEINER ORIENTATION, or does the lower bound of f(k)⋅no(k) also translate to planar graphs

    Assigning channels via the meet-in-the-middle approach

    Full text link
    We study the complexity of the Channel Assignment problem. By applying the meet-in-the-middle approach we get an algorithm for the ℓ\ell-bounded Channel Assignment (when the edge weights are bounded by ℓ\ell) running in time O∗((2ℓ+1)n)O^*((2\sqrt{\ell+1})^n). This is the first algorithm which breaks the (O(ℓ))n(O(\ell))^n barrier. We extend this algorithm to the counting variant, at the cost of slightly higher polynomial factor. A major open problem asks whether Channel Assignment admits a O(cn)O(c^n)-time algorithm, for a constant cc independent of ℓ\ell. We consider a similar question for Generalized T-Coloring, a CSP problem that generalizes \CA. We show that Generalized T-Coloring does not admit a 22o(n)poly(r)2^{2^{o\left(\sqrt{n}\right)}} {\rm poly}(r)-time algorithm, where rr is the size of the instance.Comment: SWAT 2014: 282-29

    Atomistic models of carbonate minerals: bulk and surface structures, defects, and diffusion

    Get PDF
    We review the use of interatomic potentials to describe the bulk and surface behavior of carbonate materials. Interatomic pair potentials, describing the Ca2+-O interactions and the C-O bonding of the CO22 anion group, are used to evaluate the lattice, elastic, dielectric, and vibrational data for calcite and aragonite. The resulting potential parameters for the carbonate group were then successfully transferred to models of the structures of rhombohedral carbonates of Mn, Fe, Mg, Ni, Zn, Co, and Cd. Simulations of the (1014) cleavage surface of calcite, magnesite, and dolomite show that these surfaces undergo relaxation leading to the rotation and distortion of the carbonate group with associated movement of cations. The influence of water on the surface structure has been investigated for monolayer coverage. The extent of carbonate group distortion is greater for the dry surfaces compared to the hydrated surfaces, and for the dry calcite relative to that for dry dolomite or magnesite. Point defect calculations for the doping of calcite indicate an increase in defect formation energy with increasing size of the substituting divalent ion. Migration energies for Ca, Mg, and Mn in calcite suggest a strong preference for diffusion along pathways roughly parallel to the c-axis rather than along the ab-plane

    Connecting Terminals and 2-Disjoint Connected Subgraphs

    Full text link
    Given a graph G=(V,E)G=(V,E) and a set of terminal vertices TT we say that a superset SS of TT is TT-connecting if SS induces a connected graph, and SS is minimal if no strict subset of SS is TT-connecting. In this paper we prove that there are at most (∣V∖T∣∣T∣−2)⋅3∣V∖T∣3{|V \setminus T| \choose |T|-2} \cdot 3^{\frac{|V \setminus T|}{3}} minimal TT-connecting sets when ∣TâˆŁâ‰€n/3|T| \leq n/3 and that these can be enumerated within a polynomial factor of this bound. This generalizes the algorithm for enumerating all induced paths between a pair of vertices, corresponding to the case ∣T∣=2|T|=2. We apply our enumeration algorithm to solve the {\sc 2-Disjoint Connected Subgraphs} problem in time O∗(1.7804n)O^*(1.7804^n), improving on the recent O∗(1.933n)O^*(1.933^n) algorithm of Cygan et al. 2012 LATIN paper.Comment: 13 pages, 1 figur

    The Minimum Shared Edges Problem on Grid-like Graphs

    Full text link
    We study the NP-hard Minimum Shared Edges (MSE) problem on graphs: decide whether it is possible to route pp paths from a start vertex to a target vertex in a given graph while using at most kk edges more than once. We show that MSE can be decided on bounded (i.e. finite) grids in linear time when both dimensions are either small or large compared to the number pp of paths. On the contrary, we show that MSE remains NP-hard on subgraphs of bounded grids. Finally, we study MSE from a parametrised complexity point of view. It is known that MSE is fixed-parameter tractable with respect to the number pp of paths. We show that, under standard complexity-theoretical assumptions, the problem parametrised by the combined parameter kk, pp, maximum degree, diameter, and treewidth does not admit a polynomial-size problem kernel, even when restricted to planar graphs

    Parameterized complexity of the MINCCA problem on graphs of bounded decomposability

    Full text link
    In an edge-colored graph, the cost incurred at a vertex on a path when two incident edges with different colors are traversed is called reload or changeover cost. The "Minimum Changeover Cost Arborescence" (MINCCA) problem consists in finding an arborescence with a given root vertex such that the total changeover cost of the internal vertices is minimized. It has been recently proved by G\"oz\"upek et al. [TCS 2016] that the problem is FPT when parameterized by the treewidth and the maximum degree of the input graph. In this article we present the following results for the MINCCA problem: - the problem is W[1]-hard parameterized by the treedepth of the input graph, even on graphs of average degree at most 8. In particular, it is W[1]-hard parameterized by the treewidth of the input graph, which answers the main open problem of G\"oz\"upek et al. [TCS 2016]; - it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input multigraph; - it is FPT parameterized by the star tree-cutwidth of the input graph, which is a slightly restricted version of tree-cutwidth. This result strictly generalizes the FPT result given in G\"oz\"upek et al. [TCS 2016]; - it remains NP-hard on planar graphs even when restricted to instances with at most 6 colors and 0/1 symmetric costs, or when restricted to instances with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric costs.Comment: 25 pages, 11 figure

    The Hardness of Embedding Grids and Walls

    Full text link
    The dichotomy conjecture for the parameterized embedding problem states that the problem of deciding whether a given graph GG from some class KK of "pattern graphs" can be embedded into a given graph HH (that is, is isomorphic to a subgraph of HH) is fixed-parameter tractable if KK is a class of graphs of bounded tree width and W[1]W[1]-complete otherwise. Towards this conjecture, we prove that the embedding problem is W[1]W[1]-complete if KK is the class of all grids or the class of all walls
    • 

    corecore