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Abstract. The k-colouring reconfiguration problem asks whether, for a
given graph G, two proper k-colourings α and β of G, and a positive inte-
ger `, there exists a sequence of at most ` proper k-colourings of G which
starts with α and ends with β and where successive colourings in the se-
quence differ on exactly one vertex ofG. We give a complete picture of the
parameterized complexity of the k-colouring reconfiguration problem for
each fixed k when parameterized by `. First we show that the k-colouring
reconfiguration problem is polynomial-time solvable for k = 3, settling
an open problem of Cereceda, van den Heuvel and Johnson. Then, for
all k ≥ 4, we show that the k-colouring reconfiguration problem, when
parameterized by `, is fixed-parameter tractable (addressing a question
of Mouawad, Nishimura, Raman, Simjour and Suzuki) but that it has
no polynomial kernel unless the polynomial hierarchy collapses.

1 Introduction

Graph colouring has its origin in a nineteenth century map colouring problem
and has now been an active area of research for more than 150 years, find-
ing many applications within and beyond Computer Science and Mathematics.
Given a graph G = (V,E) and a positive integer k, a k-colouring of G is a map
c : V → {1, . . . , k}; it is proper if c(u) 6= c(v) for all u, v with uv ∈ E. The prob-
lem of deciding whether a graph has a proper k-colouring for fixed k ≥ 3 was an
early example of an NP-complete problem. If, however, one knows that a graph
has a proper k-colouring, or several of them, one may wish to know more about
them such as how many there are or what structural properties they have.

One way to study these questions is to consider the k-colouring reconfigura-
tion graph: given a graph G, the k-colouring reconfiguration graph Rk(G) of G
is a graph whose vertices are the proper k-colourings of G and where an edge
is present between two k-colourings if and only if the two k-colourings differ on
only a single vertex of G.
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There are several algorithmic questions one can ask about the graph Rk(G)
such as whether Rk(G) is connected, whether there exists a path between two
given vertices of Rk(G), or how long is the shortest path between two given
vertices of Rk(G). (Note that in general Rk(G) has size exponential in the size
of G, making these questions highly non-trivial.) It is the latter question, stated
formally below, that we address in this paper.

k-Colouring Reconfiguration

Instance : An n-vertex graph G = (V,E), two proper k-colourings α and β
and a positive integer `.

Question : Is there a path in the reconfiguration graph of G between α and
β of length at most `?

General Motivation. Reconfiguration graphs can be defined for any search
problem: the vertices correspond to all solutions to the problem and the edges
are defined by a symmetric adjacency relation normally chosen to represent a
smallest possible change between solutions. They arise naturally when one wishes
to understand the solution space for a search problem.

There has been much research over the last ten years on the structure and
algorithmic aspects of reconfiguration graphs, not only for k-Colouring [1, 2,
5, 8–10] but also for many other problems, such as Satisfiability [11], Inde-
pendent Set [7, 17], List Edge Colouring [13, 15], L(2, 1)-Labeling [14],
Shortest Path [3, 4, 18], and Subset Sum [16]. From these studies, the follow-
ing subtle phenomenon has been observed, which one would like to better under-
stand: it is often (but not always) the case that NP-complete search problems
give rise to PSPACE-complete reconfiguration problems, whereas polynomial-
time solvable search problems often give rise to polynomial-time solvable recon-
figuration problems. For further background we refer the reader to the recent
survey of van den Heuvel [12].

Reconfiguration graphs are also important for constructing and analyzing
algorithms that sample or count solutions to a search problem. Indeed, under-
standing connectivity properties of the k-colouring reconfiguration graph is fun-
damental in analyzing certain randomized algorithms for sampling and counting
k-colourings of a graph and in analyzing certain cases of the Glauber dynamics
in statistical physics (see Section 5 of [12]).

Our Results. Our first result, which we prove in Section 2, shows that k-
Colouring Reconfiguration can be solved in polynomial time when k = 3,
which settles a problem raised by Cereceda, van den Heuvel and Johnson [10].
Note that the cases k = 1, 2 are easily seen to be polynomial-time solvable.

In [10], Cereceda et al. were mainly concerned with determining whether,
given a graph G and two proper 3-colourings α and β, there exists any path
between α and β in Rk(G). They found a polynomial-time algorithm to solve
this problem and further showed that, for certain instances, their algorithm
in fact finds a shortest path between α and β (a precise statement is given in
Section 2). Here we complete their result by giving an algorithm for all instances.

Theorem 1. 3-Colouring Reconfiguration can be solved in time O(n2).



For k ≥ 4, we cannot expect a polynomial-time algorithm for k-Colouring
Reconfiguration: Bonsma and Cereceda [5] showed that, for each k ≥ 4,
the problem of determining if there is any path between two given proper k-
colourings of a given graph is PSPACE-complete. On the other hand, our second
result (proven in Section 3) is that for each k ≥ 4, k-Colouring Reconfigu-
ration is fixed-parameter tractable when parameterized by the path length `.

Recall that, informally, a parameterized problem is a decision problem (in
our case k-Colouring Reconfiguration) in which every problem instance I
has an associated integer parameter p (in our case the path length `). A param-
eterized problem is fixed-parameter tractable (FPT) if every instance I can be
solved in time f(p)|I|c where f is a computable function that only depends on p
and c is a constant independent of p.

Theorem 2. For each fixed k ≥ 4, k-Colouring Reconfiguration can be
solved in time O((k·`)`2+`·`n2). In particular, for each fixed k ≥ 4, k-Colouring
Reconfiguration is FPT when parameterized by `.

Once a problem is shown to be FPT (and it is unlikely that the problem is
polynomial-time solvable), one can go further and ask whether it has a polyno-
mial kernel. It is well known that a problem is FPT with respect to a parame-
ter p if and only if it can be kernelized, i.e., if and only if, for any instance (I, p)
of the given parameterized problem, it is possible to compute in polynomial
time an equivalent instance (I ′, p′) such that |I ′|, p′ ≤ g(p) for some computable
function g (two problem instances are equivalent if and only if they are both
yes-instances or both no-instances). If g(p) is a polynomial, then the given pa-
rameterized problem is said to have a polynomial kernel. We prove the following
theorem in Section 4.

Theorem 3. For each fixed k ≥ 4, k-Colouring Reconfiguration parame-
terized by ` does not admit a polynomial kernel unless NP ⊆ coNP/poly.

In fact Theorem 3 holds even when we restrict attention to inputs where the two
proper k-colourings of the input graph differ in only two vertices (note that the
problem becomes trivial if the two given k-colourings differ in only one vertex).

Our three results give a complete picture of the parameterized complexity of
k-Colouring Reconfiguration for each fixed k when parameterized by `.

Related work. Fixed-parameter tractability of k-Colouring Reconfigura-
tion was proved independently in recent work of Bonsma and Mouawad [6].
They also prove various hardness results for other parameterizations of k-Co-
louring Reconfiguration. In particular, they proved that if k is part of
the input then k-Colouring Reconfiguration is W[1]-hard when param-
eterized only by ` (note that the problem, when parameterized only by k, is
para-PSPACE-complete due to the aforementioned result of Bonsma and Cere-
ceda [5]).

Mouawad, Nishimura, Raman, Simjour and Suzuki [20] were the first to con-
sider reconfiguration problems in the context of parameterized complexity. For
various NP-complete search problems, they showed that determining whether



there exists a path of length at most ` in the reconfiguration graph between two
given vertices is W[1]-hard (when ` is the parameter); they asked if there exists
an NP-complete problem for which the corresponding reconfiguration problem,
parameterized by `, is FPT. Theorem 2 and [6] give the second positive answer to
this question, the first being an FPT algorithm for a reconfiguration problem re-
lated to Vertex Cover [19]. However, perhaps surprisingly, Theorem 1 shows
that there even exists an NP-complete problem for which the corresponding
shortest path problem in the reconfiguration graph is polynomial-time solvable,
and thus trivially FPT when parameterized by `.

As mentioned earlier, deciding whether there exists any path in Rk(G) be-
tween two k-colourings α and β of an input graph G is polynomial-time solv-
able for k ≤ 3 [10] and PSPACE-complete for k ≥ 4 [5]. The problem remains
PSPACE-complete for bipartite graphs when k ≥ 4, for planar graphs when
4 ≤ k ≤ 6 and for planar bipartite graphs for k = 4 [5].

The algorithmic question of whether Rk(G) is connected for a given G is
addressed in [8, 9], where it is shown that the problem is coNP-complete for
k = 3 and bipartite G, but polynomial-time solvable for planar bipartite G.

Finally, the study of the diameter ofRk(G) raises interesting questions. In [10]
it is shown that every component of R3(G) has diameter polynomial (in fact
quadratic) in the size of G. On the other hand, for k ≥ 4, explicit construc-
tions [5] are given of graphs G for which Rk(G) has at least one component
with diameter exponential in the size of G. It is known that if G is a (k − 2)-
degenerate graph then Rk(G) is connected and it is conjectured that in this case
Rk(G) has diameter polynomial in the size of G [8]; for graphs of treewidth k−2
the conjecture has been proved in the affirmative [1].

2 A Polynomial-Time Algorithm for k = 3

In this section we consider 3-Colouring Reconfiguration and prove Theo-
rem 1. Some proofs are omitted for reasons of space.

First some definitions needed throughout the paper. Let G = (V,E) be a
graph on n vertices, and let α and β be two proper k-colourings of G. For any
two colourings c and d, we say that c and d agree on a vertex u if c(u) = d(u) and
that otherwise they disagree on u. An (α→β)-recolouring R of length ` = |R|
is a sequence of proper colourings c0, . . . , c` where c0 = α and c` = β, and, for
1 ≤ q ≤ `, cq and cq−1 disagree on at most one vertex. So possibly cq = cq−1
though in this case cq could be deleted and the sequence that remained would
also be an (α→β)-recolouring. The set {cq−1cq : cq−1 6= cq} is a set of edges in
the reconfiguration graph corresponding to a walk from α to β.

In this section, α and β are 3-colourings. The three colours are 1, 2 and 3,
and we think of them cyclically: so when, for example, we refer to a colour one
greater than a we mean a + 1 mod 3. A cycle in G is fixed with respect to a
3-colouring if the two neighbours of each vertex on the cycle are not coloured
alike (one can see that this implies that the cycle is coloured in this way in every



other colouring in the same component of R3(G) since one cannot change the
colour of just one vertex and obtain another proper 3-colouring).

Cereceda et al. [10] provided a partial solution to 3-Colouring Recon-
figuration. They were interested in recognizing whether or not α and β be-
long to the same component of the reconfiguration graph. They introduced a
polynomial-time algorithm that we will call FindPath(G,α, β) that

– correctly determines when α and β belong to different components of R3(G);
– finds an (α→β)-recolouring of G, of length O(n2), when α and β belong to

the same component of R3(G);
– moreover, ifG contains a fixed cycle with respect to α, the (α→β)-recolouring

found is the shortest possible.

We also note that it is possible to recognize in time O(n2) whether or not there
is a fixed cycle (this is described in [10], but is an easy exercise). We need to
show how to find a shortest possible (α→β)-recolouring of G in the case where
α and β are known to belong to the same component of G, and G contains no
fixed cycle with respect to α. We assume now that these conditions hold.

We require a further notion related to colourings called a height function
(that extends a concept introduced in [10]). Let S = c0, c1, . . . be a sequence of
colourings where ci and ci−1 disagree on exactly one vertex and c0 = α. The
height function is denoted hS and has domain S × V and its range is the set of
integers. For each v ∈ V , hS(c0, v) = 0. For i > 0, for each v ∈ V :

hS(ci, v) =

hS(ci−1, v), if ci(v) = ci−1(v);
hS(ci−1, v) + 2, if ci(v) ≡ ci−1(v) + 1 mod 3;
hS(ci−1, v)− 2, if ci(v) ≡ ci−1(v)− 1 mod 3.

So each vertex has height 0 initially and is raised or lowered by 2 when its colour
is increased or decreased as we move along the sequence of colourings. For any
(α→β)-recolouring R, let the total height of R be H(R) =

∑
v∈V |hR(β, v)|.

Lemma 1. Let R be a (α→β)-recolouring of length `. Then ` ≥ 1
2H(R).

Proof. For each colouring in R, the height of only one vertex differs from the
previous colouring in R and the height difference is 2. Thus, for each vertex v, at
least |hR(β, v)|/2 distinct colourings in R are needed and the lemma follows. ut

Lemma 2. For any colouring c, for any sequence of colourings S from α to c,
for each vertex v in V ,

2(c(v)− α(v)) ≡ hS(c, v) mod 6 (1)

Proof. We use induction on the length of S. If S contains only one colouring,
then this is α, and both sides of (1) are zero with c = α.

Suppose that S is longer and that c′ is its penultimate colouring. We must
show that if (1) is true for c′, then it is also true for c. If c and c′ agree on v,
then we are done. If c and c′ disagree on v, then we need only to notice that

2(c(v)− c′(v)) ≡ hS(c, v)− hS(c′, v) mod 6

and each side of (1) changes by the same amount if we replace c′ by c. ut



Some more terminology. If an edge is oriented, then we can define its weight
with respect to a colouring c. The weight of an edge oriented from u to v is a
value w(c,−→uv) ∈ {−1, 1} such that w(c,−→uv) ≡ c(v) − c(u) mod 3. To orient a
path is to orient each edge so that a directed path is obtained. The weight of an

oriented path w(c,
−→
P ) is the sum of the weight of its edges.

Lemma 3. For any colouring c, for any sequence of colourings S from α to c,

for each pair of vertices u, v in V , for each oriented path
−→
P from u to v,

hS(c, u) = hS(c, v) + w(c,
−→
P )− w(α,

−→
P ). (2)

Proof. We use induction on the length of S. If S contains only one colouring,
then this is α, and both sides of (2) are zero with c = α.

Suppose that S is longer and that c′ is the penultimate colouring in the
sequence. We must show that if (2) is true for c′, then it is also true for c. Let x
be the vertex on which c′ and c disagree.

Suppose that x /∈ {u, v}. If
−→
P does not contain x, then clearly the weight of

the path is the same for c′ and c. If
−→
P does contain x, then let −→yx and −→xz be the

edges of
−→
P that x belongs to. As c and c′ are proper and c(x) 6= c′(x), we must

have c(y) = c′(y) = c′(z) = c(z). Thus

w(c,−→yx) + w(c,−→xz) = c(x)− c(y) + c(z)− c(x) = 0,
w(c′,−→yx) + w(c′,−→xz) = c′(x)− c′(y) + c′(z)− c′(x) = 0.

So w(c,
−→
P ) = w(c′,

−→
P ) and both sides of (2) are unchanged when c′ replaces c.

Suppose that x = u. Let y be the vertex adjacent to x on
−→
P . Suppose that

hS(c, x) = hS(c′, x) + 2; that is, the colour of x is increased (as c replaces c′).
Then c(x) ≡ c′(x)+1 mod 3 and so c(y) ≡ c′(x)−1 mod 3. Thus w(c′,−→xy) = −1,

and, as c(y) ≡ c(x) + 1 mod 3, w(c,−→xy) = 1, which gives w(c,
−→
P ) = w(c′,

−→
P ) + 2

and (2) remains satisfied. If the height of x is instead lowered, a similar argument
can be used. The case x = v can also be proved in this way. ut

If β is obtained from α by an (α→β)-recolouring, then the vertices can be
ordered by their heights. Lemma 3 tells us that this ordering is the same for
all (α→β)-recolourings and can be found by considering only α, β and paths
in G. Let y be the vertex that is a median vertex in this ordering (if |V | is even,
arbitrarily choose one of the two vertices in the middle of the ordering). Let g
be a function defined on V such that for all v ∈ V

g(v) = w(β,
−→
Pvy)− w(α,

−→
Pvy).

Considering Lemma 3, we see that g(v) is the height of v relative to y with
respect to β, and that ordering the vertices by g is equivalent to ordering them
by height so y is also a median of this ordering.

For any integer k congruent to 2(β(y)− α(y)) mod 6, let

J(k) =
∑
v∈V
|k + g(v)|.



We observe that if k is the height of y, then J(k) is the sum of the vertices’
heights. Let (k1, k2) be the unique pair in the set {(0, 0), (2,−4), (4,−2)} such
that k1 ≡ k2 ≡ 2(β(y) − α(y)) mod 6. (Notice that, by Lemma 2, k1 and k2
are two possible values for the height of y when β is obtained by a recolouring
sequence.)

Lemma 4. Let k ≡ 2(β(y) − α(y)) mod 6 be an integer. Then J(k) is at least
min{J(k1), J(k2)}, and for any (α→β)-recolouring R, |R| ≥ 1

2 min{J(k1), J(k2)}.

Lemma 5. Let k ≡ 2(β(y) − α(y)) mod 6 be an integer. If S is a recolouring
sequence from α to c such that, for all v ∈ V , hS(c, v) = k + g(v), then c = β.

Lemma 6. Let k ≡ 2(β(y) − α(y)) mod 6 be an integer. Then there exists an
(α→β)-recolouring R of length ` such that ` = 1

2J(k).

Proof. We will define R by describing how to recolour from α to a colouring c
such that hR(c, v) = k + g(v). By Lemma 5, c = β. Let h(v) denote k + g(v).

As we go from one colouring to the next we change the height of one vertex v
by 2. If this change is always such that the difference between the current height
of v and k + g(v) is reduced by 2, then we will have ` = 1

2J(k).
More definitions: for a vertex u in G and colouring c, a maximal rising path

from u is a path on vertices u = v0, v1, . . . vt such that, for 1 ≤ i ≤ t, c(vi) ≡
c(vi−1)+1 mod 3, and vt has no neighbours coloured c(vt)+1 mod 3. A maximal
rising path can easily be found: we just repeatedly look for the next vertex along
and if none with the required colour can be found we are done; we never return
to a vertex that we have already met as this would mean we had found a fixed
cycle. A maximal falling path from u is the same except that the colours decrease
rather than increase moving along the path from u, and one can be found in
an analogous way. (That is, the colours along a rising path are, for example,
231231231231 · · · , and along a falling path are, for example, 321321321321 · · · )

We need to describe how, at each step, to choose a vertex v to recolour and
say what its “new” colour should be. Let c denote the current colouring and S
the sequence of colourings found so far (so hS(c, x) is the current height of a
vertex x).

1. Find a vertex x for which |h(x)− hS(c, x)| is maximum.
2. If h(x)−hS(c, x) > 0, find a maximal rising path from x. Else find a maximal

falling path from x. In either case, let v be the end-vertex of the path.
3. Change the colour of v so that |h(v)− hS(c, v)| is reduced by 2.

We must show that h(v) 6= hS(c, v) and that the new colouring is proper. We
will treat the case that h(x)− hS(c, x) > 0 (the other case is identical in form).

Let p be the number of edges in the maximal rising path P from x to v.

Let
−→
P be the orientation from x to v. Applying Lemma 3 twice to x and v and

then subtracting, we find that

hS(c, x) = hS(c, v) + w(c,
−→
P )− w(α,

−→
P ),

h(x) = h(v) + w(β,
−→
P )− w(α,

−→
P )

h(x)− hS(c, x) = h(v)− hS(c, v) + w(β,
−→
P )− w(c,

−→
P ).



Note that w(c,
−→
P ) = p and that w(β,

−→
P ) ≤ p since the weight of a path cannot

be more than the number of edges. Thus 0 < h(x) − hS(c, x) ≤ h(v) − hS(c, v)
and so h(v) > hS(c, v). As reducing |h(v) − hS(c, v)| requires increasing the
colour at v by 1, and it is at the end of a maximal rising path, the new colouring
is proper. ut

Proof of Theorem 1. The algorithm FindPath(G,α, β) can be used to determine
whether there is a path from α to β of length at most ` except when α and β are in
the same component ofR3(G) andG contains no fixed cycles with respect to α. In
this case, a path of length ` can be found if and only if ` ≤ 1

2 min{J(k1), J(k2)}.
This follows from Lemmas 4 and 6.

Though the running time of FindPath is not analyzed in detail in [10], it is
easy to prove that it is O(n2). We omit the details, but it is also straightforward
to show that J(k1) and J(k2) can be found in time O(n2). Moreover, if one
wishes to find the path from α to β this can be done by using the algorithm in
the proof of Lemma 6 which can also be adapted to run in time O(n2). ut

3 An FPT Algorithm for k-Colouring Reconfiguration

In this section we will present our FPT algorithm for k-Colouring Reconfig-
uration when parameterized by `. Let G = (V,E) be a graph on n vertices, and
let α, β be two proper k-colourings of G. First we prove three lemmas concern-
ing the vertices that might be recoloured if a path between α and β of length
at most ` does exist. That is, we assume that (G,α, β, `) is a yes-instance of
k-Colouring Reconfiguration. This means that there exists an (α→β)-
recolouring R = c0, . . . , c`. We assume that R has minimum length.

We say that R recolours a vertex u if cq(u) 6= α(u) for some q. Notice that
if for each recoloured vertex u we find the least q such that cq(u) 6= α(u), these
values must be distinct (else cq and cq−1 disagree on more than one vertex).
Thus the number of distinct vertices recoloured by R is at most `. We will prove
something stronger. For 0 ≤ q ≤ `, let Wq be the set of vertices on which c0
and cq disagree, that is, Wq = {u ∈ V : c0(u) 6= cq(u)}.

Lemma 7. For all q with 1 ≤ q ≤ `, the set Wq has size |Wq| ≤ q.

Proof. Suppose this is false and let r be the smallest value such that |Wr| > r. So
|Wr−1| ≤ r−1 (clearly r−1 ≥ 0 as W0 is the empty set). Then there are (at least)
two vertices v1, v2 in Wr\Wr−1, and so, for i ∈ {1, 2}, cr−1(vi) = c0(vi) 6= cr(vi),
and cr and cr−1 disagree on more than one vertex; a contradiction. ut

For any u ∈ V , let N(u) be the set of neighbours of u. For any v ∈ N(u), let
N(u, v) = {w ∈ N(u) : α(w) = α(v)}; that is, the set of neighbours of u with the
same colour as v in α. Let A0 = {v ∈ V : α(v) 6= β(v)} be the set of vertices on
which α and β disagree. For i ≥ 1, let Ai =

⋃
u∈Ai−1

{v ∈ N(u) : |N(u, v)| ≤ `}.
That is, to find Ai consider each vertex u in Ai−1 and partition N(u) into colour
classes (according to the colouring α). Vertices in N(u) that belong to colour



classes of size at most ` belong to Ai. Note that two sets Ah and Ai need not be
disjoint. Our first goal is to show that each vertex recoloured by R must be in
A∗ =

⋃`−1
h=0Ah. We will then show that the size of A∗ is bounded by a function

of k + `. This will then enable us to use brute-force to find R or some other
(α→β)-recolouring of G (if it exists).

Lemma 8. Each vertex recoloured by R belongs to A∗.

Proof. For i ≥ 0, let Li = Ai \ (
⋃

h<iAj) be the set of vertices that are in Ai

but not in any Ah with h < i. Let z be the greatest value such that R recolours
a vertex in Lz; denote this vertex by vz. By definition, every vertex in A0 is
recoloured by R. Let v0 ∈ A0. We claim that also for 1 ≤ i ≤ z − 1, there is a
vertex vi ∈ Li that is recoloured by R. Then, as v0, . . . , vz are distinct vertices
and R has length `, we have z ≤ ` − 1 proving the lemma. For contradiction,
assume there is a set Li (1 ≤ i ≤ z−1) that contains no vertex recoloured by R.

From R we construct a new recolouring sequence R′ by ignoring every re-
colouring step done to a vertex in V \

⋃
h<i Lh. For 0 ≤ q ≤ `, let dq be a

colouring of G such that

– if u ∈
⋃

h<i Lh, dq(u) = cq(u);
– if u /∈

⋃
h<i Lh, dq(u) = α(u).

Let R′ be the sequence d0, . . . , d`. Note that d0 = α, as d0(u) is either c0(u) or
α(u), and c0 = α. Moreover, if u ∈

⋃
h<i Lh =

⋃
h<iAi then d`(u) = c`(u) =

β(u), and if u /∈
⋃

h<i Lh then d`(u) = α(u) = β(u) (since α and β only disagree
on vertices in A0); thus d` = β. This means that if we can show that d1, . . . , d`−1
are proper colourings, then R′ is an (α→β)-recolouring. We will prove this first.

Assume to the contrary that R′ contains a colouring dq that is not proper.
Then there is an edge uv with dq(u) = dq(v). If u and v both belong to

⋃
h<i Lh

then cq(u) = cq(v), and if neither belong to
⋃

h<i Lh then α(u) = α(v). Both
cases are not possible, as cq and α are proper colourings. Hence we may assume,
without loss of generality, that u ∈

⋃
h<i Lh and v /∈

⋃
h<i Lh. Then cq(u) =

dq(u) = dq(v) = α(v) by the definition of dq.
As v ∈ N(u), the set N(u, v) exists. First suppose |N(u, v)| ≤ `. Then v ∈ Ai

by the definition of Ai. Hence v ∈ Lh for some h ≤ i. As v /∈
⋃

h<i Lh, we obtain
v ∈ Li. By assumption, no vertex of Li is recoloured by R. Hence cq(v) = α(v)
and thus cq(u) = cq(v) contradicting the fact that cq is a proper k-colouring.

Now suppose |N(u, v)| > `. Because cq(u) = α(v) and cq is proper, we find
that cq(w) 6= cq(u) = α(v) = α(w) for all w ∈ N(u, v). Thus Wq ⊇ N(u, v) and
so |Wq| ≥ |N(u, v)| > ` ≥ q contradicting the fact that |W (q)| ≤ q by Lemma 7.
So, dq must be proper. We conclude that R′ is an (α→β)-recolouring of length `.

We now proceed as follows. Recall that vz ∈ Lz. Then there is a pair of
colourings cq and cq+1 that differ only on vz. Because vz ∈ Lz, vz /∈

⋃
h<i Lh.

Hence, dq and dq+1 are identical colourings. We remove dq from R′ to obtain an-
other (α→β)-recolouring, which has length shorter than `, contradicting that R
has minimum length. This completes the proof. ut

Lemma 9 gives a bound on |A∗| depending only on k and ` (proof omitted).



Lemma 9. The set A∗ has size |A∗| ≤ ` · (k`)`.

We are now ready to present our FPT algorithm and prove Theorem 2.

Proof of Theorem 2. Let k ≥ 1, and let (G,α, β, `) be an instance of k-Colouring
Reconfiguration, where G is a graph on n vertices, and α, β are two proper
k-colourings of G. Our algorithm does as follows. First compute the set A∗ in
O(n2) time. By Lemma 9, we find that |A∗| ≤ ` · (k`)`. By Lemma 8, we only
have to search for a path of length at most ` in Rk(G) among the vertices of A∗.
By allowing consecutive recolourings to be equal we may restrict our search to
(α→β)-recolourings of length exactly `. Use brute force to enumerate all possible
sequences of pairs (vi, ci), such that for all 0 ≤ i ≤ `−1, vi is a vertex in A∗ and ci
is a colour in {1, . . . , k}. For each such sequence do as follows. Starting from α, re-
colour vi with colour ci for i = 0, . . . , `−1. As soon as this results in a k-colouring
that is not proper, stop considering the sequence. If not, check whether the re-
sulting colouring is equal to β. If this happens, then there is a path of length ` in
Rk(G). Hence, return yes. Otherwise, that is, if no sequence has this property,
return no. Processing one sequence takes time O(`n2). By using Lemma 9, the

number of sequences is at most (|A∗| ·k)` ≤ ((` · (k · `)`) ·k)` ≤ (k · `)`2+`, leading

to a total running time of O((k · `)`2+` · `n2). This completes the proof. ut

4 A Lower Bound for Kernelization for k ≥ 4

In this section we sketch the proof of Theorem 3, which states that k-Colouring
Reconfiguration parameterized by the maximum path length ` does not ad-
mit a polynomial kernelization for k ≥ 4 unless NP ⊆ coNP/poly. Theorem 3 is
proved by a polynomial parameter transformation from the Hitting Set prob-
lem parameterized by the number m of sets in the input. It is known that this
rules out polynomial kernels for the target problem, unless NP ⊆ coNP/poly.

The main idea for the reduction is to create a 4-coloured tree that serves
as a selection gadget for each set, which requires a recolouring at its root. This
in turn requires a chain of earlier recolourings starting in one of the leaves; the
selection of possible leaves encodes the elements of the set. Finally, recolouring
any leaf requires a recolouring in a set of vertices corresponding to the ground
set; this encodes the selection of a hitting set. Crucially, the height of the tree
construction, which factors into the number ` of needed recolourings, can be
bounded polynomially in the input parameter m.

The selection trees are composed of claws on four vertices a, b, c, d each,
where c is the center vertex. For each of these vertices, α and β colour are the
same, but we may (through adjacent gadgets) require a recolouring of d. The
latter will be only possible by first recolouring a or b. To ensure this, several
colours will be forbidden for a, b, c, d by adjacency to a global k-clique:

1. For a we have α(a) = β(a) = 2, and, using adjacency to the k-clique, only
colours 2 and 4 allow proper k-colourings.

2. For b we have α(b) = β(b) = 3, and only colours 3 and 4 are possible.



3. For c we have α(c) = β(c) = 1, and only colours 1, 2, and 3 are possible.
4. For d we have α(d) = β(d) = 4, and only colours 1 and 4 are possible.

If we need to recolour d then it can only change to colour 1. This requires to
first recolour c to either 2 or 3. This in turn, depending on choice of colour 2
or 3, necessitates a recolouring of a to 4 or b to 4. Thus, locally, we make a
choice out of two options using constant number of recolourings. By building a
tree structure from such claws, always making d-vertices of new claws adjacent
to the a- or b-vertex of the current claw, we can make a one out of n choice at
cost of O(log n) recolourings.

By standard arguments when reducing from a Hitting Set instance with m
sets (recall that m is the parameter) we have a ground set size of n ≤ 2m. Thus,
the choice of element to hit in each set costs only O(log n) = O(m) recolourings
per set. To relate the different choices we make a set of n vertices that are
adjacent to the corresponding leaves in each selection gadget. If we end up with
a recolouring in a leaf of a selection gadget then this requires a recolouring of
the corresponding one among these n vertices. By correct choice of number of
recolourings and detailed analysis, we can enforce that at most p out of n vertices
can be recoloured. Note that this involves also recolouring almost all vertices back
to their initial colour since α and β will agree on almost all vertices (which is
necessary to make the graph exponentially large in the parameter value). The
whole recolouring from α to β is then possible within the chosen number of steps
if and only if the given set family has a hitting set of size at most p.

5 Conclusions

We showed that k-Colouring Reconfiguration is fixed-parameter tractable
for any fixed k ≥ 1, when parameterized by the number of recolourings `. It is
a natural question to ask whether a single-exponential FPT algorithm can be
achieved for this problem. We also proved that the k-Colouring Reconfig-
uration problem is polynomial-time solvable for k = 3, which solves the open
problem of Cereceda et al. [10], and that it has no polynomial kernel for all k ≥ 4,
when parameterized by ` (up to the standard assumption that NP * coNP/poly).
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