424 research outputs found

    Multichannel parametrization of \pi N scattering amplitudes and extraction of resonance parameters

    Full text link
    We present results of a new multichannel partial-wave analysis for \pi N scattering in the c.m. energy range 1080 to 2100 MeV. This work explicitly includes \eta N and K \Lambda channels and the single pion photoproduction channel. Resonance parameters were extracted by fitting partial-wave amplitudes from all considered channels using a multichannel parametrization that is consistent with S-matrix unitarity. The resonance parameters so obtained are compared to predictions of quark models

    Odd Parity Light Baryon Resonances

    Get PDF
    We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T-matrix for meson-baryon scattering in s-wave. The building blocks of the scheme are the pion and nucleon octets, the rho nonet and the Delta decuplet. We identify poles in this unitary T-matrix and interpret them as resonances. We study here the non exotic sectors with strangeness S=0,-1,-2,-3 and spin J=1/2, 3/2 and 5/2. Many of the poles generated can be associated with known N, Delta, Sigma, Lambda and Xi resonances with negative parity. We show that most of the low-lying three and four star odd parity baryon resonances with spin 1/2 and 3/2 can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Xi(1620), Xi(1690), Xi(1950), Xi(2250), Omega(2250) and Omega(2380) resonances, which have not been determined experimentally yet.Comment: New appendix and references adde

    Non-perturbative Landau gauge and infrared critical exponents in QCD

    Get PDF
    We discuss Faddeev-Popov quantization at the non-perturbative level and show that Gribov's prescription of cutting off the functional integral at the Gribov horizon does not change the Schwinger-Dyson equations, but rather resolves an ambiguity in the solution of these equations. We note that Gribov's prescription is not exact, and we therefore turn to the method of stochastic quantization in its time-independent formulation, and recall the proof that it is correct at the non-perturbative level. The non-perturbative Landau gauge is derived as a limiting case, and it is found that it yields the Faddeev-Popov method in Landau gauge with a cut-off at the Gribov horizon, plus a novel term that corrects for over-counting of Gribov copies inside the Gribov horizon. Non-perturbative but truncated coupled Schwinger-Dyson equations for the gluon and ghost propagators D(k)D(k) and G(k)G(k) in Landau gauge are solved asymptotically in the infrared region. The infrared critical exponents or anomalous dimensions, defined by D(k)1/(k2)1+aDD(k) \sim 1/(k^2)^{1 + a_D} and G(k)1/(k2)1+aGG(k) \sim 1/(k^2)^{1 + a_G} are obtained in space-time dimensions d=2,3,4d = 2, 3, 4. Two possible solutions are obtained with the values, in d=4d = 4 dimensions, aG=1,aD=2a_G = 1, a_D = -2, or aG=[93(1201)1/2]/980.595353,aD=2aG a_G = [93 - (1201)^{1/2}]/98 \approx 0.595353, a_D = - 2a_G.Comment: 26 pages. Modified 2.25.02 to update references and to clarify Introduction and Conclusio

    On the massless contributions to the vacuum polarization of heavy quarks

    Get PDF
    Recently Groote and Pivovarov have given notice of a possible fault in the use of sum rules involving two-point correlation functions to extract information on heavy quark parameters, due to the presence of massless contributions that invalidate the construction of moments of the spectral densities. Here we show how to circumvent this problem through a new definition of the moments, providing an infrared safe and consistent procedure.Comment: 1+9 pages, 3 figures. Discussion on QCD sum rules applications added. Conclusions unchanged. Version to be published in Journal of Physics

    Gauge equivalence in QCD: the Weyl and Coulomb gauges

    Full text link
    The Weyl-gauge (A0a=0)A_0^a=0) QCD Hamiltonian is unitarily transformed to a representation in which it is expressed entirely in terms of gauge-invariant quark and gluon fields. In a subspace of gauge-invariant states we have constructed that implement the non-Abelian Gauss's law, this unitarily transformed Weyl-gauge Hamiltonian can be further transformed and, under appropriate circumstances, can be identified with the QCD Hamiltonian in the Coulomb gauge. We demonstrate an isomorphism that materially facilitates the application of this Hamiltonian to a variety of physical processes, including the evaluation of SS-matrix elements. This isomorphism relates the gauge-invariant representation of the Hamiltonian and the required set of gauge-invariant states to a Hamiltonian of the same functional form but dependent on ordinary unconstrained Weyl-gauge fields operating within a space of ``standard'' perturbative states. The fact that the gauge-invariant chromoelectric field is not hermitian has important implications for the functional form of the Hamiltonian finally obtained. When this nonhermiticity is taken into account, the ``extra'' vertices in Christ and Lee's Coulomb-gauge Hamiltonian are natural outgrowths of the formalism. When this nonhermiticity is neglected, the Hamiltonian used in the earlier work of Gribov and others results.Comment: 25 page

    Equivariant Poincar\'e series of filtrations and topology

    Full text link
    Earlier, for an action of a finite group GG on a germ of an analytic variety, an equivariant GG-Poincar\'e series of a multi-index filtration in the ring of germs of functions on the variety was defined as an element of the Grothendieck ring of GG-sets with an additional structure. We discuss to which extend the GG-Poincar\'e series of a filtration defined by a set of curve or divisorial valuations on the ring of germs of analytic functions in two variables determines the (equivariant) topology of the curve or of the set of divisors

    CP asymmetry in the Higgs decay into the top pair due to the stop mixing

    Full text link
    We investigate a potentially large CP violating asymmetry in the decay of a neutral scalar or pseudoscalar Higgs boson into the top-anti-top pair. The source of the CP nonconservation is the complex mixing in the (left-right) stop sector. One of the interesting consequence is the different rates of the Higgs boson decays into CP conjugate polarized states.Comment: 14 pages, 8 figures include

    Regularity of squarefree monomial ideals

    Full text link
    We survey a number of recent studies of the Castelnuovo-Mumford regularity of squarefree monomial ideals. Our focus is on bounds and exact values for the regularity in terms of combinatorial data from associated simplicial complexes and/or hypergraphs.Comment: 23 pages; survey paper; minor changes in V.

    Effective boost and "point-form" approach

    Get PDF
    Triangle Feynman diagrams can be considered as describing form factors of states bound by a zero-range interaction. These form factors are calculated for scalar particles and compared to point-form and non-relativistic results. By examining the expressions of the complete calculation in different frames, we obtain an effective boost transformation which can be compared to the relativistic kinematical one underlying the present point-form calculations, as well as to the Galilean boost. The analytic expressions obtained in this simple model allow a qualitative check of certain results obtained in similar studies. In particular, a mismatch is pointed out between recent practical applications of the point-form approach and the one originally proposed by Dirac.Comment: revised version as accepted for publicatio

    A consistent derivation of the quark--antiquark and three quark potentials in a Wilson loop context

    Full text link
    In this paper we give a new derivation of the quark-antiquark potential in the Wilson loop context. This makes more explicit the approximations involved and enables an immediate extension to the three-quark case. In the qqq\overline{q} case we find the same semirelativistic potential obtained in preceding papers but for a question of ordering. In the 3q3q case we find a spin dependent potential identical to that already derived in the literature from the ad hoc and non correct assumption of scalar confinement. Furthermore we obtain the correct form of the spin independent potential up to the 1/m21/m^2 order.Comment: 30 pages, Revtex (3 figures available as hard copies only), IFUM 452/F
    corecore