199 research outputs found

    A new camera for high-resolution infrared imaging of works of art

    Get PDF
    A new camera – SIRIS (scanning infrared imaging system) – developed at the National Gallery in London allows high-resolution images to be made in the near infrared region (900–1700 nm). The camera is based on a commercially available 320 × 256 pixel indium gallium arsenide area array sensor. This relatively small sensor is moved across the focal plane of the camera using two orthogonal translation stages to give images of c. 5000 × 5000 pixels. The main advantages of the SIRIS camera over scanning infrared devices or sequential image capture and mosaic assembly are its comparative portability and rapid image acquisition – making a 5000 × 5000 pixel image takes less than 20 minutes. The SIRIS camera can operate at a range of resolutions; from around 2.5 pixels per millimetre over an area of up to 2 × 2 m to 10 pixels per millimetre when examining an area measuring 0.5 × 0.5 m. The development of the mechanical, optical and electronic components of the camera, including the design of a new lens, is described. The software used to control image capture and to assemble the individual frames into a seamless mosaic image is mentioned. The camera was designed primarily to examine underdrawings in paintings; preliminary results from test targets and paintings imaged in situ are presented and the quality of the images compared with those from other cameras currently used for this application

    SIRIS: a high resolution scanning infrared camera for examining paintings

    Get PDF
    The new SIRIS (Scanning InfraRed Imaging System) camera developed at the National Gallery in London allows highresolution images of paintings to be made in the near infrared region (900–1700 nm). Images of 5000 × 5000 pixels are made by moving a 320 × 256 pixel InGaAs array across the focal plane of the camera using two orthogonal translation stages. The great advantages of this camera over scanning infrared devices are its relative portability and that image acquisition is comparatively rapid – a full 5000 × 5000 pixel image can be made in around 20 minutes. The paper describes the development of the mechanical, optical and electronic components of the camera, including the design of a new lens. The software routines used to control image capture and to assemble the individual 320 × 256 pixel frames into a seamless mosaic image are also mentioned. The optics of the SIRIS camera have been designed so that the camera can operate at a range of resolutions; from around 2.5 pixels per millimetre on large paintings of up to 2000 × 2000 mm to 10 pixels per millimetre on smaller paintings or details of paintings measuring 500 × 500 mm. The camera is primarily designed to examine underdrawings in paintings; preliminary results from test targets and paintings are presented and the quality of the images compared with those from other cameras currently used in this field

    In Vitro Propagation of Angiopteris Evecta Using Spores

    Full text link
    Techniques of establishing Angiopleris evecta plants in vitro were studied. Soaking of A. evecta spores in water for 24 hours markedly reduced spore contamination. Soaking of the spores in 1 -2 % of sodium hypochlorite for less than 5 minutes allowed satisfactory disinfestation without affecting spore viability. Lower concentration of minerals (1/4 MS), presence of charcoal in the medium and exposure of the spores to light were crucial for spore germination and gainetophytc development of A. evecta

    Optical coherence tomography- a non-invasive technique applied to conservation of paintings

    Get PDF
    It is current practice to take tiny samples from a painting to mount and examine in cross-section under a microscope. However, since conservation practice and ethics limit sampling to a minimum and to areas along cracks and edges of paintings, which are often unrepresentative of the whole painting, results from such analyses cannot be taken as representative of a painting as a whole. Recently in a preliminary study, we have demonstrated that near-infrared Optical Coherence Tomography (OCT) can be used directly on paintings to examine the cross-section of paint and varnish layers without contact and the need to take samples. OCT is an optical interferometric technique developed for in vivo imaging of the eye and biological tissues; it is essentially a scanning Michelson’s interferometer with a ‘broadband’ source that has the spatial coherence of a laser. The low temporal coherence and high spatial concentration of the source are the keys to high depth resolution and high sensitivity 3D imaging. The technique is non-invasive and noncontact with a typical working distance of 2 cm. This non-invasive technique enables cross-sections to be examined anywhere on a painting. In this paper, we will report new results on applying near-infrared en-face OCT to paintings conservation and extend the application to the examination of underdrawings, drying processes, and quantitative measurements of optical properties of paint and varnish layers

    Classical and revisionary theism on the divine as personal: a rapprochement?

    Get PDF
    To claim that the divine is a person or personal is, according to Richard Swinburne, ‘the most elementary claim of theism’ (1993, 101). I argue that, whether the classical theist’s concept of the divine as a person or personal is construed as an analogy or a metaphor, or a combination of the two, analysis necessitates qualification of that concept such that any differences between the classical theist’s concept of the divine as a person or personal and revisionary interpretations of that concept are merely superficial. Thus, either the classical theist has more in common with revisionary theism than he/she might care to admit, or classical theism is a multi-faceted position which encompasses interpretations which some might regard as revisionist. This article also explores and employs the use of a gender-neutral pronoun in talk about God

    Advances in multispectral and hyperspectral imaging for archaeology and art conservation

    Get PDF
    Multispectral imaging has been applied to the field of art conservation and art history since the early 1990s. It is attractive as a noninvasive imaging technique because it is fast and hence capable of imaging large areas of an object giving both spatial and spectral information. This paper gives an overview of the different instrumental designs, image processing techniques and various applications of multispectral and hyperspectral imaging to art conservation, art history and archaeology. Recent advances in the development of remote and versatile multispectral and hyperspectral imaging as well as techniques in pigment identification will be presented. Future prospects including combination of spectral imaging with other noninvasive imaging and analytical techniques will be discussed

    Conceptualising spirituality for medical research and health service provision

    Get PDF
    The need to take account of spirituality in research and health services provision is assuming ever greater importance. However the field has long been hampered by a lack of conceptual clarity about the nature of spirituality itself. We do not agree with the sceptical claim that it is impossible to conceptualise spirituality within a scientific paradigm. Our aims are to 1) provide a brief over-view of critical thinking that might form the basis for a useful definition of spirituality for research and clinical work and 2) demystify the language of spirituality for clinical practice and research
    • 

    corecore