254 research outputs found
Recommended from our members
Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures
A key feature of two-dimensional materials is that the sign and concentration of their carriers can be externally controlled with techniques such as electrostatic gating. However, conventional electrostatic gating has limitations, including a maximum carrier density set by the dielectric breakdown, and ionic liquid gating and direct chemical doping also suffer from drawbacks. Here, we show that an electron-beam-induced doping technique can be used to reversibly write high-resolution doping patterns in hexagonal boron nitride-encapsulated graphene and molybdenum disulfide (MoS2) van der Waals heterostructures. The doped MoS2 device exhibits an order of magnitude decrease of subthreshold swing compared with the device before doping, whereas the doped graphene devices demonstrate a previously inaccessible regime of high carrier concentration and high mobility, even at room temperature. We also show that the approach can be used to write high-quality p–n junctions and nanoscale doping patterns, illustrating that the technique can create nanoscale circuitry in van der Waals heterostructures
Microscopic theory for quantum mirages in quantum corrals
Scanning tunneling microscopy permits to image the Kondo resonance of a
single magnetic atom adsorbed on a metallic surface. When the magnetic impurity
is placed at the focus of an elliptical quantum corral, a Kondo resonance has
been recently observed both on top of the impurity and on top of the focus
where no magnetic impurity is present. This projection of the Kondo resonance
to a remote point on the surface is referred to as quantum mirage. We present a
quantum mechanical theory for the quantum mirage inside an ideal quantum corral
and predict that the mirage will occur in corrals with shapes other than
elliptical
Multiply Folded Graphene
The folding of paper, hide, and woven fabric has been used for millennia to
achieve enhanced articulation, curvature, and visual appeal for intrinsically
flat, two-dimensional materials. For graphene, an ideal two-dimensional
material, folding may transform it to complex shapes with new and distinct
properties. Here, we present experimental results that folded structures in
graphene, termed grafold, exist, and their formations can be controlled by
introducing anisotropic surface curvature during graphene synthesis or transfer
processes. Using pseudopotential-density functional theory calculations, we
also show that double folding modifies the electronic band structure of
graphene. Furthermore, we demonstrate the intercalation of C60 into the
grafolds. Intercalation or functionalization of the chemically reactive folds
further expands grafold's mechanical, chemical, optical, and electronic
diversity.Comment: 29 pages, 10 figures (accepted in Phys. Rev. B
Single-Atom Gating of Quantum State Superpositions
The ultimate miniaturization of electronic devices will likely require local
and coherent control of single electronic wavefunctions. Wavefunctions exist
within both physical real space and an abstract state space with a simple
geometric interpretation: this state space--or Hilbert space--is spanned by
mutually orthogonal state vectors corresponding to the quantized degrees of
freedom of the real-space system. Measurement of superpositions is akin to
accessing the direction of a vector in Hilbert space, determining an angle of
rotation equivalent to quantum phase. Here we show that an individual atom
inside a designed quantum corral can control this angle, producing arbitrary
coherent superpositions of spatial quantum states. Using scanning tunnelling
microscopy and nanostructures assembled atom-by-atom we demonstrate how single
spins and quantum mirages can be harnessed to image the superposition of two
electronic states. We also present a straightforward method to determine the
atom path enacting phase rotations between any desired state vectors. A single
atom thus becomes a real space handle for an abstract Hilbert space, providing
a simple technique for coherent quantum state manipulation at the spatial limit
of condensed matter.Comment: Published online 6 April 2008 in Nature Physics; 17 page manuscript
(including 4 figures) + 3 page supplement (including 2 figures);
supplementary movies available at http://mota.stanford.ed
Detecting Electronic States at Stacking Faults in Magnetic Thin Films by Tunneling Spectroscopy
Co islands grown on Cu(111) with a stacking fault at the interface present a
conductance in the empty electronic states larger than the Co islands that
follow the stacking sequence of the Cu substrate. Electrons can be more easily
injected into these faulted interfaces, providing a way to enhance transmission
in future spintronic devices. The electronic states associated to the stacking
fault are visualized by tunneling spectroscopy and its origin is identified by
band structure calculations.Comment: 4 pages, 4 figures; to be published in Phys. Rev. Lett (2000
Interaction between Kondo impurities in a quantum corral
We calculate the spectral densities for two impurities inside an elliptical
quantum corral using exact diagonalization in the relevant Hilbert subspace and
embedding into the rest of the system. For one impurity, the space and energy
dependence of the change in differential conductance observed
in the quantum mirage experiment is reproduced. In presence of another
impurity, is very sensitive to the hybridization between
impurity and bulk. The impurities are correlated ferromagnetically between
them. A hopping eV between impurities destroy the Kondo
resonance.Comment: 4 pages, 4 figure
Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip
Using the recursive Green's function technique, we study the coherent
electron conductance of a quantum point contact in the presence of a scanning
probe microscope tip. Images of the coherent fringe inside a quantum point
contact for different widths are obtained. It is found that the conductance of
a specific channel is reduced while other channels are not affected as long as
the tip is located at the positions correspending to that channel. Moreover,
the coherent fringe is smoothed out by increasing the temperature or the
voltage across the device. Our results are consistent with the experiments
reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page
Self-interference of a single Bose-Einstein condensate due to boundary effects
A simple model wavefunction, consisting of a linear combination of two
free-particle Gaussians, describes many of the observed features seen in the
interactions of two isolated Bose-Einstein condensates as they expand, overlap,
and interfere. We show that a simple extension of this idea can be used to
predict the qualitative time-development of a single expanding BEC condensate
produced near an infinite wall boundary, giving similar interference phenomena.
We also briefly discuss other possible time-dependent behaviors of single BEC
condensates in restricted geometries,such as wave packet revivals.Comment: 8 pages, no figures, to appear in Physica Script
Size-effects in the Density of States in NS and SNS junctions
The quasiparticle local density of states (LDOS) is studied in clean NS and
SNS junctions with increasing transverse size, from quasi-one-dimensional to
three-dimensional. It is shown that finite transverse dimensions are related to
pronounced effects in the LDOS, such as fast oscillations superimposed on the
quasiparticle interference oscillations (for NS) and additional peaks in the
bound state spectrum in the subgap region (for SNS). Also, the validity of the
Andreev approximation is discussed. It turns out to be an acceptable
approximation in all situations tested.Comment: 9 pages, RevTex, 5 figures, accepted in Phys. Rev.
- …
