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Size effects in the density of states in normal-metal–superconductor
and superconductor–normal-metal–superconductor junctions

M. Blaauboer, R. T. W. Koperdraad, A. Lodder, and D. Lenstra
Faculteit Natuurkunde en Sterrenkunde, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

~Received 19 March 1996!

The quasiparticle local density of states~LDOS! is studied in clean normal-metal–superconductor~NS! and
superconductor–normal-metal–superconductor~SNS! junctions with increasing transverse size, from quasi-
one-dimensional to three-dimensional. It is shown that finite transverse dimensions are related to pronounced
effects in the LDOS, such as fast oscillations superimposed on the quasiparticle interference oscillations~for
NS! and additional peaks in the bound state spectrum in the subgap region~for SNS!. Also, the validity of the
Andreev approximation is discussed. It turns out to be an acceptable approximation in all situations tested.
@S0163-1829~96!07430-9#

I. INTRODUCTION

In 1964 Andreev described a new kind of reflection pro-
cess by which electrons incident on a normal-metal–
superconductor~NS! interface are reflected as holes, and vice
versa.1 This process, now known as Andreev reflection, led
shortly after its discovery to both theoretical and experimen-
tal work on tunneling transport and the related local density
of states~LDOS! in small superconducting structures involv-
ing at least one NS interface. The dimensions of the samples
perpendicular to the current flow were essentially macro-
scopic and the corresponding theories2,3 were three dimen-
sional ~3D!.

Miniaturization of devices led to the development of me-
soscopic physics.4 The initial model approaches in that new
field were one dimensional~1D!. Attention was focused on
an obviously nonequilibrium property, the conductance, and
guided by Landauer’s early result for it.5,6 Finite transverse
dimensions were considered by counting the number of
transverse modes. The extension of Landauer’s formula to
the NS system was given by Lambert.7 In these studies only
the total density of states of 1D systems enters, being in-
versely proportional to the velocity. In calculating the Jo-
sephson current in superconductor–normal-metal–
superconductor~SNS! junctions Beenakker8 applied a more
advanced expression for the total density of states given by
Akkermanset al.9

As far as the LDOS is concerned, even recent studies10–12

are 3D as yet. In this paper we calculate the LDOS of NS and
SNS junctions with finite transverse dimensions, by this con-
sidering effectively 1D systems and all possibilities between
1D and 3D. A Green function approach13,14 is used, inspired
by Ishii15 and Tanaka and Tsukada.11

In case of the NS junction, we first investigate the LDOS
in the quasi-1D limit of this junction. ‘‘Quasi-1D’’ means in
the limit of transverse system size going to zero. The LDOS
is shown to exhibit oscillations as a function of both energy
E and distance from the interface. This result reproduces
previously observed and analyzed oscillations in tunneling
experiments.16,17We then increase the transverse dimensions
and find the appearance of additional oscillations. In progres-
sively refined applications of scanning tunneling

microscopy18 these oscillatory effects in the LDOS might
well become detectable in the near future. In the case of
infinite transverse dimensions the additional oscillations dis-
appear again.

In the SNS junction, we study the LDOS in the normal
region for energies below the superconducting gap, and find
in the quasi-1D junction one bound state. With increasing
transverse system size, the number of bound states increases.

A point of discussion in our analysis is the role of the
Andreev approximation, which is demonstrated to be a good
approximation for both the NS and the SNS junctions. Its
effect becomes noticeable for large transverse dimensions
only.

In Sec. II we give a brief outline of the theory and the
model used. The LDOS in NS and SNS junctions is dis-
cussed in Secs. III and IV, followed by some conclusions in
Sec. V.

II. THEORY

The Green function method used in this paper is described
in Ref. 13, and will be published in a forthcoming
publication.14 We refer the reader to these papers for an ex-
tensive description of it, and here only summarize the as-
pects which are of direct importance for the calculation of
the local density of states.

The Green function describes the various ways of propa-
gation from one point in spacer to another oner 8. Here we
study clean metallic systems consisting of a few layers, in
which scattering only takes place at the interfaces between
the layers. In the presence of an interface, the total Green
function G(r ,r 8) usually consists of two terms: one bulk
term, accounting for propagation in the material without any
influence from the interface, and a scattering contribution
from interaction with the interface. We use the expressions
for the homogeneous bulk superconductor as given by Ishii15

and follow Koperdraadet al.13,14 in determining the scatter-
ing matrix elements for two simple systems: a planar NS
junction with only one interface, and a SNS junction contain-
ing two interfaces.

The central quantity of this paper, the local quasiparticle
density of states in 3D inhomogeneous superconducting
structures, is calculated from the matrix Green function cor-
responding to the Bogoliubov equations for quasiparticle
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states.19 This Green function is the solution of the following
matrix equation:

@ ivnt02Kt32D~x!#G~r ,r 8!5d~r2r 8!t0 , ~1!

where vn5(2n11)pkBT are the Matsubara frequencies,
K is the free particle Hamiltonian minus the chemical poten-
tial m, in atomic units (\52m51! given by

K52“

22m,

and the matricest0, t3, andD(x) are given by

t05F1 0

0 1G , t35F1 0

0 21G ,
D~x!5F 0 D~x!

D* ~x! 0 G .
HereD(x) denotes the superconducting pair potential, which
is zero in the normal part of the system.

We apply the above sketched formalism to systems which
are infinitely long in thex direction, but of finite lengthLy
andLz in the transversey andz directions, for example to a
NS junction with a square transverse cross sectionLyLz as
drawn in Fig. 1. Contrary to the translationally invariant situ-
ation treated usually,11,13 in which G(r ,r 8) depends on the
differencesy2y8 and z2z8 only, in the present case the
dependence ony, z and the primed coordinates is not re-
duced to differences. This means that variations in the LDOS
in the transverse directions survive after takingy85y and
z85z, the latter substitutions being required in calculating
the LDOS. However, such dependence cannot be measured
and further it depends on the precise preparation of the
boundaries. Therefore it is sufficient to take the average over
the transverse directions. This can be done as follows. First,
the boundary conditions are chosen such that the Green func-
tion vanishes at the boundaries in both transverse directions.
Only the functions contribute that are proportional to
sin(kyy) and sin(kzz), with ky5nyp/Ly and kz5nzp/Lz ,
ny andnz being non-negative integers. The expansion of the
full Green function in terms of these functions has expansion
coefficientsG(x,x8,ky ,ky8,kz ,kz8). Subsequently, one puts
y85y andz85z in this expansion and averages it over the
wire’s cross section. In this way, only terms withky85ky
and kz85kz survive, the corresponding expansion coeffi-
cients of which are denoted byG(x,x8,ky ,kz ,ivn). The

variable ivn is added because the Green function is still a
solution of Eq.~1!. Finally one manipulates Eq.~1! accord-
ing to the expansion and averaging procedure indicated
above and one finds that it reduces to

@ ivnt02Kxt32D~x!#G~x,x8,ky ,kz ,ivn!5d~x2x8!t0
~2!

with

Kx52
d2

dx2
2kFx

2 and kFx
2 5m2ky

22kz
2 . ~3!

Using properly normalized functions in the complete sets in
the y and z directions, it is found that the quasiparticle
LDOS ~Ref. 13! reduces to

r~x,E!52
1

p
lim
d→0

1

LyLz
(
ky ,kz

ImG11~x,x,ky ,kz ,E1 id!.

~4!

G11 is the upper left matrix element of
G(x,x8,ky ,kz ,ivn) with x5x8, and the standard replace-
ment of ivn by E1 id has been applied.11 Im G11 denotes
the imaginary part ofG11 andE is the quasiparticle energy
measured with respect to the Fermi energym. Equation~4!
forms the basis of all our present calculations.

A well-known and often applied approximation in calcu-
lations concerning inhomogeneous superconducting struc-
tures is the so-called Andreev approximation~AA !. It was

FIG. 1. 3D planar NS junction with finite transverse dimension
LyLz.

FIG. 2. LDOS as a function of distancex in a quasi-1D NS
junction with Lt54; mN5mS[m50.5 Ry andD50.0001 Ry. The
interface is located atx50. The inset shows Friedel oscillations in
urN2rN,bulku3106 as a function ofx in the normal metal for
E/D51.01. Note that the scales on they axis differ by a factor
105.
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first introduced by Andreev1 and can be stated in several
ways. Perhaps the simplest is to say that in AA normal re-
flections due to mismatch of wave vectors at the normal and
superconducting sides of a NS interface are neglected. Math-
ematically, it means that we make a series expansion of the
electron and hole wave vectors, and only take into account
terms up to first order inE/m andD/m. If the wave vector
appears as a prefactor, it is approximated even further and
taken to be the Fermi wave vector. In 1D systems, where one
is often interested in energiesE deviating very little from the
large Fermi energy, this is regarded as a good approximation.
In our 3D systems, with an effective chemical potential
kFx
2 5m2ky

22kz
2 application of the AA relies on the assump-

tion thatE,D!kFx
2 . It is however nota priori clear whether

this assumption is valid for allky andkz ; especially for large
transverse dimensionsLy andLz , whenr, as given by Eq.
~4!, is a sum over many wave vectorsky , kz , there are terms
for which kFx

2 is of the same order of magnitude asE and

D.

III. THE NS JUNCTION

We consider a normal-metal to superconductor junction
as in Fig. 1. From now onwards, in the actual calculations
the transverse dimensions are taken equal, soLy5Lz[Lt . In
principle, the pair potentialD has to be determined
self-consistently,12 but as a first approximation we take it to
be zero in the normal region and constant in the supercon-
ductor. So the proximity effect is not included. The chemical
potentials of the normal metal and superconductor are de-
noted bymN andmS respectively.

Figure 2 shows the quasi-1D LDOS in a NS junction with
mN5mS[m, as a function ofx for various energiesE.D.
The calculation is exact, i.e., without the AA, and typical
values of the chemical potentials and the gap energy in a
superconductor are used, expressed in atomic units. Oscilla-
tions are clearly visible, both in the normal metal LDOS
(rN , see inset! and in the superconductor LDOS (rS). The

oscillations inrN are the well-known Friedel oscillations,
due to interference of incident and reflected electron wave
functions, which give rise to a component inrN proportional
to cos(2kex), whereke5AmN1E. The characteristic wave-
length of the oscillations is thenLN

char[2p/2ke'4. Since
there is no potential barrier at the interface, the amplitude of
these oscillations is very small, 5 orders of magnitude
smaller than the ones in the superconductor. These Friedel
oscillations would not be found in the AA.

The oscillations inrS are caused by quasiparticle inter-
ference. McMillan and Rowell16 named them the super-
conducting analogue of the Friedel oscillations. Let the
electronlike ~holelike! quasiparticle wave number be de-
noted byqe (qh); the oscillatory component inrS;cos((qe

2qh)x)'cos(AE22D2x/AmS) then gives rise to a charac-
teristic wavelengthLS

char[2pAmS/AE22D2@LN
char.

For completeness, we also plot the oscillations inrS as a
function of E/D for a fixed position in the superconductor;
see Fig. 3. They were measured in thin films by Rowell and
Mc Millan16 and Tomash.17 The characteristic energy scale is
given byES

char5A4p2mS /x
21D2.

Note that despite their ‘‘analogous’’ background, there is
also a clear difference between the oscillations inrS and the
Friedel oscillations. The latter are due to interfering opposite
wave vectors of equal magnitude, whereas the former are
caused by interference of two slightly different parallel wave
vectors,qe andqh.

For E,D ~not shown in Fig. 2! rS is a decaying func-
tion of x, as single quasiparticles cannot propagate into
the superconductor~evanescent waves!. The decay rate

is given bye2AD22E2x/AmS and the penetration depth is on
the order of the superconducting coherence length,20

j05mS /(kFD);O(1000).
Now we increase the transverse dimensionLt . Results

in the superconductor forE/D51.01 are shown in Fig. 4.
The summation (ny ,nz

in the LDOS with

FIG. 3. LDOS as a function ofE/D in a quasi-1D NS junction
at x533104 in the superconductor.mN5mS[m50.5 Ry,
D50.0001 Ry, andLt54. FIG. 4. LDOS as a function of distancex in a NS junction for

various transverse dimensionsLt of the junction. The interface is
located atx50. m50.5 Ry,D 5 0.0001 Ry, andE/D51.01.
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kFx5Am2ky
22kz

25Am2p2/Lt
2(ny

21nz
2) gives rise to fast

fluctuations superimposed on the above discussed slow os-
cillations due to quasiparticle interference. AsLt increases,
more transverse modes fit into the transverse dimensions,

leading to decreasing size effects. In the limitLt→`, the
summation may be replaced by an integration
(1/Lt

2(ky ,kz
→1/(2p)2*dky*dkz) which for the LDOS re-

sults in ~for E.D, and in AA!

rS
`~x,E![ lim

Lt→`

rS~x,E!5 lim
Lt→`

1

2pLt
2 (
ny ,nz

S E2~E2AE22D2!cosS xAE22D2

AmS2
p2

Lt
2 ~ny

21nz
2!
D

AE22D2AmS2
p2

Lt
2~ny

21nz
2!

D
5

1

~2p!2AE22D2 FEAmS2~E2AE22D2!S AmScosa2AmSaE
a

`siny

y
dyD G , ~5!

wherea[xAE22D2/AmS.
This is the solid line in Fig. 4. It is easy to verify that

limx→`rS
`(E)5EAmS/(2p)2AE22D2, representing the

LDOS in a 3D bulk superconductor.
In this regime of 3D NS junctions it is interesting to ask

what the role of the AA is. As discussed in Sec. II, one
would expect this approximation to become worse as the
number of transverse modes increases. For the quasi-1D sys-
tem the difference between values ofrS with or without AA
is typically;1023%. For systems with smallLt (Lt;100) it
becomes;0.1% and for large systems at most;1%. This
is a factor 103 larger than in the 1D case, although still not
visible on the scale of Fig. 4. We are led to conclude that
electrons with large transverse wavenumbersky andkz , thus
with an angle of incidence deviating considerably from per-
pendicular to the interface, do not contribute much to the
LDOS. By using the AA, the value of the LDOS inN re-
duces and the size-effect fluctuations disappear, whereas in
the superconductor they are both enhanced. This can be un-
derstood by noticing that in AA the normal reflections due to
mismatch of wavevectors are neglected. On the normal-
metal side of a NS junction withmN5mS , the Friedel oscil-
lations, which are caused by normal reflections, are thus sup-
pressed in AA, so thatrN equalsrN, bulk . On the other hand,
the oscillations in the LDOS in the superconductor, which
are induced by Andreev reflection, are enhanced in AA, due
to increased quasiparticle transmission. However, since the

amount of normal reflection is very small if there is no po-
tential barrier at the interface, the enhancement ofrS is also
very small.

If there is a potential barrier at the interface, then the
dominant normal reflection mechanism is of course not the
mismatch of wave vectors inN andS, but the presence of the
barrier. In that case we would expect that application of the
AA, even for largeLt , does not lead to significant changes in
the value of the LDOS, at most;1023%.

IV. THE BOUND STATE SPECTRUM OF
A SNS JUNCTION

We study a SNS junction as shown in Fig. 5 with the
lengthL of the normal region on the order of the supercon-
ducting coherence lengthj0. The junction has again cross
sectionLt

2 . The magnitude of the pair potential in both su-
perconductors is taken equal, but there is a difference in
phasedf[fR2fL . For a review of this type of weak links,
we refer to Likharev.21

FIG. 5. The planar SNS junction: the energyE and pair potential
D are measured from the Fermi energy.

FIG. 6. Bound state spectrum in the normal part of a quasi-1D
SNS junction, calculatedwithin AA. Lt54, m50.5 Ry,D50.0001
Ry, andL52000.
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The above Josephson junction is considered with
mN5mS[m and first in AA. So both interfaces are perfect,
and there is full Andreev reflection of all quasiparticles with
E,D.

In Fig. 6 the LDOS in the normal region is plotted vs
E/D, for various phase differencesdf and in the quasi-1D
limit. The continuous spectra forE.D, which are propor-
tional to (m1E)21/2 in the one-dimensional case, are not
shown. Bound states appear at energies satisfying the rela-
tion of Kulik,22 which was later also derived by other
authors23,20 for a 1D SNS junction in AA:

2pn52 arccos~E/D!2
E

Am
L6df. ~6!

In our formalism,13 Eq. ~6! defines the poles of the scattering
matrix elements in the matrix Green function; it can be un-
derstood in the following simple way.

An electron travelling fromx50 to x5L acquires the
phase

keL2fR2arccos~E/D!.

The first term is the phase accumulated during propagation
through the normal metal; the second one is the phase shift
acquired upon Andreev reflection into a hole and is equal to
the phase of the pair potential in the superconductor on the
right, and the third term stems from evanescently entering of
the wave function into this superconductor.24

Similarly, the back travelling hole acquires the phase

2khL1fL2arccos~E/D!.

For constructive interference, the total phase acquired on one
roundtrip should be an integer multiple of 2p, so

~ke2kh!L22 arccos~E/D!1fL2fR52pn.

In AA, so up to terms of first order inE/Am in the expansion
of ke andkh, this is the same relation as Eq.~6!.

Upon increasingLt one obtains a picture like Fig. 7,
which is forLt 5 8, corresponding to two transverse modes.

In addition to the 1D bound state, additional peaks appear
due to the finite transverse dimensions. The width of the
peaks in the figure is determined by the small imaginary part
d in the energyE1id. The actual bound state energy is
found ford→0. The number of peaks is equal to the number
of different combinations of transverse modes in they and
z directions. ForLt58, the three peaks, from right to left,
correspond to the modes with (ny ,nz) equal to~0,0! ~the 1D
bound state!, ~1,0! or ~0,1! ~the bound state which corre-
sponds to one mode in either they or z direction! and ~1,1!
~the bound state corresponding to one mode in both they and
z direction!. The inset of Fig. 7 shows that for largeLt the
discrete peaks due to the finite transverse size of the junction
disappear. In the limitLt→`, one indeed expects a band.3

All the above was done in AA. Releasing this approxima-
tion yields a bound state spectrum with a slight shift of the
peaks, as compared to the same calculation in AA. Even for
large junctions, this shift is,1022% towards lower energies
and we thus conclude that the AA is good.

V. CONCLUSIONS

In conclusion, we have calculated the LDOS in clean me-
soscopic superconducting NS and SNS structures with finite
transverse dimensions. Going from quasi-1D to 3D systems
by increasing the transverse dimensions has pronounced ef-
fects on the LDOS in both types of junctions; in NS junc-
tions additional oscillations are superimposed on the usual
slow Friedel-like oscillations due to quasiparticle interfer-
ence. In SNS junctions, we found additional peaks appearing
in the bound state spectrum as a function of the transverse
system size.

Besides, we have tested the influence of applying the An-
dreev approximation, by performing all calculations of the
LDOS both with and without AA. It turns out, that both in
the case of a single NS interface and in the case of a SNS
junction the AA does not have a large effect on the LDOS,
although the AA-induced error grows by a factor of 103 upon
going from quasi-1D to 3D systems. It produces a small
correction to the value of the LDOS.

Finally it is worth noting that the Green function method
used is not limited to either studies of the LDOS or to the
mesoscopic junctions considered here; it can also be used to
study, e.g., supercurrents and quasiparticle currents, and it
can be applied to much larger systems, such as supercon-
ducting superlattices. The latter systems were up to now
studied only11 in the Andreev approximation.
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large system withLt5400.
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