2,096 research outputs found

    Lack of Evidence for an Association between Iridovirus and Colony Collapse Disorder

    Get PDF
    Colony collapse disorder (CCD) is characterized by the unexplained losses of large numbers of adult worker bees (Apis mellifera) from apparently healthy colonies. Although infections, toxins, and other stressors have been associated with the onset of CCD, the pathogenesis of this disorder remains obscure. Recently, a proteomics study implicated a double-stranded DNA virus, invertebrate iridescent virus (Family Iridoviridae) along with a microsporidium (Nosema sp.) as the cause of CCD. We tested the validity of this relationship using two independent methods: (i) we surveyed healthy and CCD colonies from the United States and Israel for the presence of members of the Iridovirus genus and (ii) we reanalyzed metagenomics data previously generated from RNA pools of CCD colonies for the presence of Iridovirus-like sequences. Neither analysis revealed any evidence to suggest the presence of an Iridovirus in healthy or CCD colonies

    Standard methods for Apis mellifera anatomy and dissection

    Get PDF
    An understanding of the anatomy and functions of internal and external structures is fundamental to many studies on the honey bee Apis mellifera. Similarly, proficiency in dissection techniques is vital for many more complex procedures. In this paper, which is a prelude to the other papers of the COLOSS BEEBOOK, we outline basic honey bee anatomy and basic dissection techniques

    First report of sacbrood virus in honey bee (Apis mellifera) colonies in Brazil

    Get PDF
    Sacbrood disease, an affliction of honey bees (Apis mellifera) characterized by brood that fails to pupate and subsequently dies, is an important threat to honey bee health. The disease is caused by the sacbrood virus (SBV), a positive-, single-stranded RNA virus in the order Picornavirales. Because of the economic importance of honey bees for both pollination and honey production, it is vital to understand and monitor the spread of viruses such as SBV. This virus has been found in many places across the globe, including recently in some South American countries, and it is likely that it will continue to spread. We performed a preliminary study to search for SBV in two apiaries of Africanized honey bees in the State of Sao Paulo, Brazil, using RT-PCR and Sanger sequencing and found the first evidence of SBV in honey bee colonies in Brazil. The virus was detected in larvae, foraging and nurse bees from two colonies, one of which had symptoms of sacbrood disease, at the beginning of the winter season in June 2011. No SBV was found in samples from nine other nearby colonies.CAPESCAPESCNPqCNPqFAPESPFAPES

    Detection of Phase Jumps of Free Core Nutation of the Earth and their Concurrence with Geomagnetic Jerks

    Get PDF
    We detected phase jumps of the Free Core Nutation (FCN) of the Earth directly from the analysis of the Very Long Baseline Interferometer (VLBI) observation of the Earth rotation for the period 1984-2003 by applying the Weighted Wavelet Z-Transform (WWZ) method and the Short-time Periodogram with the Gabor function (SPG) method. During the period, the FCN had two significant phase jumps in 1992 and 1998. These epochs coincide with the reported occurrence of geomagnetic jerks.Comment: 8 pages, 4 figure

    Methanol Maser Emission from Galactic Center Sources with Excess 4.5 {\mu}m Emission

    Full text link
    We present a study of signatures of on-going star formation in a sample of protostellar objects with enhanced 4.5 {\mu}m emission ('green' sources) near the Galactic center. To understand how star formation in the Galactic center region compares to that of the Galactic disk, we used the Expanded Very Large Array to observe radiatively excited Class II 6.7 GHz CH3OH masers and collisionally excited Class I 44 GHz CH3OH masers, both tracers of high-mass star formation, toward a sample of 34 Galactic center and foreground 'green' sources. We find that 33\pm15% of Galactic center sources are coincident with 6.7 GHz masers, and that 44\pm17% of foreground sources are coincident with 6.7 GHz masers. For 44 GHz masers, we find correlation rates of 27\pm13% and 25\pm13% for Galactic center green sources and foreground green sources, espectively. Based on these CH3OH maser detection rates, as well as correlations of green sources with other tracers of star formation, such as 24 {\mu}m emission and infrared dark clouds (IRDCs), we find no significant difference between the green sources in the Galactic center and those foreground to it. This suggests that once the star formation process has begun, the environmental differences between the Galactic center region and the Galactic disk have little effect on its observational signatures. We do find, however, some evidence that may support a recent episode of star formation in the Galactic center region.Comment: 73 pages, 34 figures, 5 tables. Accepted for publication in Ap

    Rapid, energy-efficient synthesis of the layered carbide, Al<sub>4</sub>C<sub>3</sub>

    Get PDF
    The phase-pure binary aluminium carbide, Al4C3 can be synthesised in vacuo from the elements in 30 minutes via microwave heating in a multimode cavity reactor. The success of the reaction is dependent on the use of finely divided aluminium and graphite starting materials, both of which couple effectively to the microwave field. The yellow-brown powder product was characterised by powder X-ray diffraction, scanning electron microscopy/energy dispersive X-ray spectroscopy thermogravimetric-differential thermal analysis and Raman spectroscopy. Powders were composed of hexagonal single crystallites tens of microns in diameter (rhombohedral space group R[3 with combining macron]m; Z = 3; a = 3.33813(5) Å, c = 25.0021(4) Å) and were stable to 1000 °C in air, argon and nitrogen. Equivalent microwave reactions of the elements in air led to the formation of the oxycarbide phases Al2OC and Al4O4C

    A retrosynthetic co-templating method for the preparation of silicoaluminophosphate molecular sieves

    Get PDF
    This work has been supported by Johnson Matthey PLC, UK. Solid-state NMR spectra were obtained at the EPSRC UK National Solid-state NMR Service at Durham.A retrosynthetic method has been developed to design the synthesis of target zeotypes whose frameworks belong to the ABC-6 structural family and which contain gme cages. This permits the preparation of silicoaluminophosphate versions of AFX (SAPO-56), SFW (STA- 18) and GME (STA-19) topology types. The method makes simultaneous use of two organic structure directing agents (SDAs) to promote the formation of structural features such as cages or channels of the target framework. Computational modelling was used to identify SDAs for gme and other cages or channels in the target structures. The trimethylammonium cation was found to be the most favourable SDA for the gme cage while bisdiazabicyclooctane (DABCO) alkane cations and quaternary ammonium oligomers of DABCO with connecting polymethylene chain lengths of 4 to 8 methylene units acted as 1 templates for the additional cages or channels, respectively. The incorporation of each of the co-SDAs in the as-prepared materials was confirmed by chemical analysis, 13C MAS NMR and Rietveld refinement combined with computational modeling. Calcination of the SAPO- 56, STA-18 and some of the STA-19 materials gives microporous, fully tetrahedrally- coordinated framework solids with AFX, SFW and GME topologies: other STA-19 samples convert topotactically to SAPO-5. These results show that SAPOs in the ABC-6 family can be prepared via a targeted co-templating approach.PostprintPostprintPeer reviewe
    • 

    corecore