284 research outputs found
Morfologia de machos e fêmeas de Euglossa annectans Dresler 1982 (Hymenoptera, Apidae, Euglossini).
Foram coletados dados de morfometria de machos e fêmeas de Euglossa annectans em condições de laboratório, de um grupo de células separado artificialmente, a partir de um ninho alojado espontaneamente em caixa racional de abelhas sem ferrão
Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich's ataxia.
Inherited deficiency in the mitochondrial protein frataxin (FXN) causes the rare disease Friedreich's ataxia (FA), for which there is no successful treatment. We identified a redox deficiency in FA cells and used this to model the disease. We screened a 1600-compound library to identify existing drugs, which could be of therapeutic benefit. We identified the topical anesthetic dyclonine as protective. Dyclonine increased FXN transcript and FXN protein dose-dependently in FA cells and brains of animal models. Dyclonine also rescued FXN-dependent enzyme deficiencies in the iron-sulfur enzymes, aconitase and succinate dehydrogenase. Dyclonine induces the Nrf2 [nuclear factor (erythroid-derived 2)-like 2] transcription factor, which we show binds an upstream response element in the FXN locus. Additionally, dyclonine also inhibited the activity of histone methyltransferase G9a, known to methylate histone H3K9 to silence FA chromatin. Chronic dosing in a FA mouse model prevented a performance decline in balance beam studies. A human clinical proof-of-concept study was completed in eight FA patients dosed twice daily using a 1% dyclonine rinse for 1 week. Six of the eight patients showed an increase in buccal cell FXN levels, and fold induction was significantly correlated with disease severity. Dyclonine represents a novel therapeutic strategy that can potentially be repurposed for the treatment of FA
A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues.
Identification and functional validation of FDA-approved positive and negative modulators of the mitochondrial calcium uniporter
The mitochondrial calcium uniporter (MCU), the highly selective channel responsible for mitochondrial Ca2+ entry, plays important roles in physiology and pathology. However, only few pharmacological compounds directly and selectively modulate its activity. Here, we perform high-throughput screening on a US Food and Drug Administration (FDA)-approved drug library comprising 1,600 compounds to identify molecules modulating mitochondrial Ca2+ uptake. We find amorolfine and benzethonium to be positive and negative MCU modulators, respectively. In agreement with the positive effect of MCU in muscle trophism, amorolfine increases muscle size, and MCU silencing is sufficient to blunt amorolfine-induced hypertrophy. Conversely, in the triple-negative breast cancer cell line MDA-MB-231, benzethonium delays cell growth and migration in an MCU-dependent manner and protects from ceramide-induced apoptosis, in line with the role of mitochondrial Ca2+ uptake in cancer progression. Overall, we identify amorolfine and benzethonium as effective MCU-targeting drugs applicable to a wide array of experimental and disease conditions
Longevidade e tamanho de ninho gregário de Euglossa annectans em área urbana.
Observações em um ninho gregário foram feitas em um jardim de casa de bairro arborizado da cidade de São Paulo instalado em caixa de madeira para ninhos de abelhas sem ferrão a 1.8Om de altura e distante 0.70cm de outro ninho em muro. No verão de 2003, o ninho com pelo menos 27 abelhas se distribuía em duas gavetas com 108 células na parte inferior, junto da entrada, e 31 na parte superior
Comparison of pupil diameter and tear production in dogs treated with acepromazine, tramadol and their combination
Pathways related to mitochondrial dysfunction in cartilage of endemic osteoarthritis patients in China
n this paper, we present the first evidence of differences in the mitochondria-related gene expression profiles of adult articular cartilage derived from patients with Kashin-Beck disease and normal controls. The expression of 705 mitochondria-related genes was analyzed by mitochondria-related gene expression analysis and ingenuity pathways analysis. Mitochondria-related gene expression analysis identified 9 up-regulated genes in Kashin-Beck disease based on their average expression ratio. Three canonical pathways involved in oxidative phosphorylation, apoptosis signaling and pyruvate metabolism were identified, which indicate the involvement of mitochondrial dysfunction in the pathogenesis of Kashin-Beck disease.</p
The Influence of Shc Proteins on Life Span in Mice
The signaling molecule p66Shc is often described as a longevity protein. This conclusion is based on a single life span study that used a small number of mice. The purpose of the present studies was to measure life span in a sufficient number of mice to determine if longevity is altered in mice with decreased Shc levels (ShcKO). Studies were completed at UC Davis and the European Institute of Oncology (EIO). At UC Davis, male C57BL/6J WT and ShcKO mice were fed 5% or 40% calorie-restricted (CR) diets. In the 5% CR group, there was no difference in survival curves between genotypes. There was also no difference between genotypes in prevalence of neoplasms or other measures of end-of-life pathology. At 40% calorie restriction group, 70th percentile survival was increased in ShcKO, while there were no differences between genotypes in median or subsequent life span measures. At EIO, there was no increase in life span in ShcKO male or female mice on C57BL/6J , 129Sv, or hybrid C57BL/6J -129Sv backgrounds. These studies indicate that p66Shc is not a longevity protein. However, additional studies are needed to determine the extent to which Shc proteins may influence the onset and severity of specific age-related diseases
- …
