1,408 research outputs found
Sensitivity of Global Modeling Initiative chemistry and transport model simulations of radon-222 and lead-210 to input meteorological data
International audienceWe have used the Global Modeling Initiative chemistry and transport model to simulate the radionuclides radon-222 and lead-210 using three different sets of input meteorological information: 1. Output from the Goddard Space Flight Center Global Modeling and Assimilation Office GEOS-STRAT assimilation; 2. Output from the Goddard Institute for Space Studies GISS II' general circulation model; and 3. Output from the National Center for Atmospheric Research MACCM3 general circulation model. We intercompare these simulations with observations to determine the variability resulting from the different meteorological data used to drive the model, and to assess the agreement of the simulations with observations at the surface and in the upper troposphere/lower stratosphere region. The observational datasets we use are primarily climatologies developed from multiple years of observations. In the upper troposphere/lower stratosphere region, climatological distributions of lead-210 were constructed from ~25 years of aircraft and balloon observations compiled into the US Environmental Measurements Laboratory RANDAB database. Taken as a whole, no simulation stands out as superior to the others. However, the simulation driven by the NCAR MACCM3 meteorological data compares better with lead-210 observations in the upper troposphere/lower stratosphere region. Comparisons of simulations made with and without convection show that the role played by convective transport and scavenging in the three simulations differs substantially. These differences may have implications for evaluation of the importance of very short-lived halogen-containing species on stratospheric halogen budgets
Combination GLP-1 and Insulin Treatment Fails to Alter Myocardial Fuel Selection Versus Insulin Alone in Type 2 Diabetes
Context
Glucagon-like peptide-1 (GLP-1) and the clinically available GLP-1 agonists have been shown to exert effects on the heart. It is unclear whether these effects occur at clinically used doses in vivo in humans, possibly contributing to CVD risk reduction.
Objective
To determine whether liraglutide at clinical dosing augments myocardial glucose uptake alone or in combination with insulin compared to insulin alone in metformin-treated Type 2 diabetes mellitus.
Design
Comparison of myocardial fuel utilization after 3 months of treatment with insulin detemir, liraglutide, or combination detemir+liraglutide.
Setting
Academic hospital
Participants
Type 2 diabetes treated with metformin plus oral agents or basal insulin.
Interventions
Insulin detemir, liraglutide, or combination added to background metformin
Main Outcome Measures
Myocardial blood flow, fuel selection and rates of fuel utilization evaluated using positron emission tomography, powered to demonstrate large effects.
Results
We observed greater myocardial blood flow in the insulin-treated groups (median[25th, 75th percentile]: detemir 0.64[0.50, 0.69], liraglutide 0.52[0.46, 0.58] and detemir+liraglutide 0.75[0.55, 0.77] mL/g/min, p=0.035 comparing 3 groups and p=0.01 comparing detemir groups to liraglutide alone). There were no evident differences between groups in myocardial glucose uptake (detemir 0.040[0.013, 0.049], liraglutide 0.055[0.019, 0.105], detemir+liraglutide 0.037[0.009, 0.046] µmol/g/min, p=0.68 comparing 3 groups). Similarly there were no treatment group differences in measures of myocardial fatty acid uptake or handling, and no differences in total oxidation rate.
Conclusions
These observations argue against large effects of GLP-1 agonists on myocardial fuel metabolism as mediators of beneficial treatment effects on myocardial function and ischemia protection
Kinetics of catalysis with surface disorder
We study the effects of generalised surface disorder on the monomer-monomer
model of heterogeneous catalysis, where disorder is implemented by allowing
different adsorption rates for each lattice site. By mapping the system in the
reaction-controlled limit onto a kinetic Ising model, we derive the rate
equations for the one and two-spin correlation functions. There is good
agreement between these equations and numerical simulations. We then study the
inclusion of desorption of monomers from the substrate, first by both species
and then by just one, and find exact time-dependent solutions for the one-spin
correlation functions.Comment: LaTex, 19 pages, 1 figure included, requires epsf.st
Transition from electron accumulation to depletion at InGaN surfaces
The composition dependence of the Fermi-level pinning at the oxidized (0001) surfaces of n-type InxGa1−xN films (0<=x<=1) is investigated using x-ray photoemission spectroscopy. The surface Fermi-level position varies from high above the conduction band minimum (CBM) at InN surfaces to significantly below the CBM at GaN surfaces, with the transition from electron accumulation to depletion occurring at approximately x=0.3. The results are consistent with the composition dependence of the band edges with respect to the charge neutrality level
Hierarchical Spatial Gossip for Multiresolution Representations in Sensor Networks
In this paper we propose a lightweight algorithm for constructing multi-resolution data representations for sensor networks. At each sensor node u, we compute, O(logn) aggregates about exponentially enlarging neighborhoods centered at u. The ith aggregate is the aggregated data from nodes approximately within 2 i hops of u. We present a scheme, named the hierarchical spatial gossip algorithm, to extract and construct these aggregates, for all sensors simultaneously, with a total communication cost of O(npolylogn). The hierarchical gossip algorithm adopts atomic communication steps with each node choosing to exchange information with a node distance d away with probability ∼ 1/d 3. The attractiveness of the algorithm attributes to its simplicity, low communication cost, distributed nature and robustness to node failures and link failures. We show in addition that computing multi-resolution aggregates precisely (i.e., each aggregate uses all and only the nodes within 2 i hops) requires a communication cost of Ω(n √ n), which does not scale well with network size. An approximate range in aggregate computation like that introduced by the gossip mechanism is therefore necessary in a scalable efficient algorithm. Besides the natural applications of multi-resolution data summaries in data validation and information mining, we also demonstrate the application of the pre-computed multi-resolution data summaries in answering range queries efficiently
Heterogeneous Catalysis on a Disordered Surface
We introduce a simple model of heterogeneous catalysis on a disordered
surface which consists of two types of randomly distributed sites with
different adsorption rates. Disorder can create a reactive steady state in
situations where the same model on a homogeneous surface exhibits trivial
kinetics with no steady state. A rich variety of kinetic behaviors occur for
the adsorbate concentrations and catalytic reaction rate as a function of model
parameters.Comment: 4 pages, gzipped PostScript fil
Kinetics of Heterogeneous Single-Species Annihilation
We investigate the kinetics of diffusion-controlled heterogeneous
single-species annihilation, where the diffusivity of each particle may be
different. The concentration of the species with the smallest diffusion
coefficient has the same time dependence as in homogeneous single-species
annihilation, A+A-->0. However, the concentrations of more mobile species decay
as power laws in time, but with non-universal exponents that depend on the
ratios of the corresponding diffusivities to that of the least mobile species.
We determine these exponents both in a mean-field approximation, which should
be valid for spatial dimension d>2, and in a phenomenological Smoluchowski
theory which is applicable in d<2. Our theoretical predictions compare well
with both Monte Carlo simulations and with time series expansions.Comment: TeX, 18 page
Intercomparisons of Aura MLS, ACE, and HALOE Observations of Long-Lived Trace Species Using the Langley Lagrangian Chemistry and Transport Model
We use the LaRC Lagrangian Chemistry and Transport Model (LCTM) [Considine et al., 2007; Pierce et al., 2003] to intercompare ACE, Aura, and HALOE observations of long-lived trace species. The LCTM calculates the transport, mixing, and photochemical evolution of an ensemble of parcels that have been initialized from ACE-FTS measurements. Here we focus on late November, 2004 comparisons, due to the previous 3-week period of continuous HALOE observations and MLS v2.2 data on November 29, 2004
Equilibrium Properties of A Monomer-Monomer Catalytic Reaction on A One-Dimensional Chain
We study the equilibrium properties of a lattice-gas model of an catalytic reaction on a one-dimensional chain in contact with a reservoir
for the particles. The particles of species and are in thermal contact
with their vapor phases acting as reservoirs, i.e., they may adsorb onto empty
lattice sites and may desorb from the lattice. If adsorbed and
particles appear at neighboring lattice sites they instantaneously react and
both desorb. For this model of a catalytic reaction in the
adsorption-controlled limit, we derive analytically the expression of the
pressure and present exact results for the mean densities of particles and for
the compressibilities of the adsorbate as function of the chemical potentials
of the two species.Comment: 19 pages, 5 figures, submitted to Phys. Rev.
- …
