2,744 research outputs found
When does brokerage matter? Citation impact of research teams in an emerging academic field
Through exposure to heterogeneous sources of knowledge, actors who broker between unconnected contacts are more likely to generate valuable output. We contribute to the theory of social capital of brokerage by considering the impact of field maturity. Using longitudinal data from the field of strategic management we find that the benefits of network brokerage are stronger during the early stages of field development and diminish as the field matures. The results of our study call for further research on the interplay between network structures and processes of field emergence
A numerical study of infinitely renormalizable area-preserving maps
It has been shown in (Gaidashev et al, 2010) and (Gaidashev et al, 2011) that
infinitely renormalizable area-preserving maps admit invariant Cantor sets with
a maximal Lyapunov exponent equal to zero. Furthermore, the dynamics on these
Cantor sets for any two infinitely renormalizable maps is conjugated by a
transformation that extends to a differentiable function whose derivative is
Holder continuous of exponent alpha>0.
In this paper we investigate numerically the specific value of alpha. We also
present numerical evidence that the normalized derivative cocycle with the base
dynamics in the Cantor set is ergodic. Finally, we compute renormalization
eigenvalues to a high accuracy to support a conjecture that the renormalization
spectrum is real
How realistic are solar model atmospheres?
Recently, new solar model atmospheres have been developed to replace
classical 1D LTE hydrostatic models and used to for example derive the solar
chemical composition. We aim to test various models against key observational
constraints. In particular, a 3D model used to derive the solar abundances, a
3D MHD model (with an imposed 10 mT vertical magnetic field), 1D models from
the PHOENIX project, the 1D MARCS model, and the 1D semi-empirical model of
Holweger & M\"uller. We confront the models with observational diagnostics of
the temperature profile: continuum centre-to-limb variations (CLV), absolute
continuum fluxes, and the wings of hydrogen lines. We also test the 3D models
for the intensity distribution of the granulation and spectral line shapes. The
predictions from the 3D model are in excellent agreement with the continuum CLV
observations, performing even better than the Holweger & M\"uller model
(constructed largely to fulfil such observations). The predictions of the 1D
theoretical models are worse, given their steeper temperature gradients. For
the continuum fluxes, predictions for most models agree well with the
observations. No model fits all hydrogen lines perfectly, but again the 3D
model comes ahead. The 3D model also reproduces the observed continuum
intensity fluctuations and spectral line shapes very well. The excellent
agreement of the 3D model with the observables reinforces the view that its
temperature structure is realistic. It outperforms the MHD simulation in all
diagnostics, implying that recent claims for revised abundances based on MHD
modelling are premature. Several weaknesses in the 1D models are exposed. The
differences between the PHOENIX LTE and NLTE models are small. We conclude that
the 3D hydrodynamical model is superior to any of the tested 1D models, which
gives further confidence in the solar abundance analyses based on it.Comment: 17 pages, 15 figures. Accepted for publication in A&
A Two-Parameter Recursion Formula For Scalar Field Theory
We present a two-parameter family of recursion formulas for scalar field
theory. The first parameter is the dimension . The second parameter
() allows one to continuously extrapolate between Wilson's approximate
recursion formula and the recursion formula of Dyson's hierarchical model. We
show numerically that at fixed , the critical exponent depends
continuously on . We suggest the use of the independence as a
guide to construct improved recursion formulas.Comment: 7 pages, uses Revtex, one Postcript figur
Spectral degeneracy and escape dynamics for intermittent maps with a hole
We study intermittent maps from the point of view of metastability. Small
neighbourhoods of an intermittent fixed point and their complements form pairs
of almost-invariant sets. Treating the small neighbourhood as a hole, we first
show that the absolutely continuous conditional invariant measures (ACCIMs)
converge to the ACIM as the length of the small neighbourhood shrinks to zero.
We then quantify how the escape dynamics from these almost-invariant sets are
connected with the second eigenfunctions of Perron-Frobenius (transfer)
operators when a small perturbation is applied near the intermittent fixed
point. In particular, we describe precisely the scaling of the second
eigenvalue with the perturbation size, provide upper and lower bounds, and
demonstrate convergence of the positive part of the second eigenfunction
to the ACIM as the perturbation goes to zero. This perturbation and associated
eigenvalue scalings and convergence results are all compatible with Ulam's
method and provide a formal explanation for the numerical behaviour of Ulam's
method in this nonuniformly hyperbolic setting. The main results of the paper
are illustrated with numerical computations.Comment: 34 page
High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age
HARPS-N spectra with S/N > 250 and MARCS model atmospheres were used to
derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten
stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B)
selected to have metallicities in the range -0.15 < [Fe/H] < +0.15 and ages
between 1 and 7 Gyr. Stellar gravities were obtained from seismic data and
effective temperatures were determined by comparing non-LTE iron abundances
derived from FeI and FeII lines. Available non-LTE corrections were also
applied when deriving abundances of the other elements. The results support the
[X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and
[Zn/Fe] decrease by ~0.1 dex over the lifetime of the Galactic thin disk due to
delayed contribution of iron from Type Ia supernovae relative to prompt
production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the
other hand, increase by ~0.3 dex, which can be explained by an increasing
contribution of s-process elements from low-mass AGB stars as time goes on. The
trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio
between refractory and volatile elements among stars of similar age. Two stars
with about the same age as the Sun show very different trends of [X/H] as a
function of elemental condensation temperature Tc and for 16 Cyg, the two
components have an abundance difference, which increases with Tc. These
anomalies may be connected to planet-star interactions.Comment: 13 pages with 7 figures. Accepted for publication in A&
Thermodynamic Limit Of The Ginzburg-Landau Equations
We investigate the existence of a global semiflow for the complex
Ginzburg-Landau equation on the space of bounded functions in unbounded domain.
This semiflow is proven to exist in dimension 1 and 2 for any parameter values
of the standard cubic Ginzburg-Landau equation. In dimension 3 we need some
restrictions on the parameters but cover nevertheless some part of the
Benjamin-Feijer unstable domain.Comment: uuencoded dvi file (email: [email protected]
Defying jet-gas alignment in two radio galaxies at z~2 with extended light profiles: Similarities to brightest cluster galaxies
We report the detection of extended warm ionized gas in two powerful
high-redshift radio galaxies, NVSS J210626-314003 at z=2.10 and TXS 2353-003 at
z=1.49, that does not appear to be associated with the radio jets. This is
contrary to what would be expected from the alignment effect, a characteristic
feature of distant, powerful radio galaxies at z> 0.6. The gas also has smaller
velocity gradients and line widths than most other high-z radio galaxies with
similar data. Both galaxies are part of a systematic study of 50 high-redshift
radio galaxies with SINFONI, and are the only two that are characterized by the
presence of high surface-brightness gas not associated with the jet axis and by
the absence of such gas aligned with the jet. Both galaxies are spatially
resolved with ISAAC broadband imaging covering the rest-frame R band, and have
extended wings that cannot be attributed to line contamination. We argue that
the gas and stellar properties of these galaxies are more akin to gas-rich
brightest cluster galaxies in cool-core clusters than the general population of
high-redshift radio galaxies at z>2. In support of this interpretation, one of
our sources, TXS 2353-003, for which we have H\alpha\ narrowband imaging, is
associated with an overdensity of candidate H\alpha\ emitters by a factor of 8
relative to the field at z=1.5. We discuss possible scenarios of the
evolutionary state of these galaxies and the nature of their emission line gas
within the context of cyclical AGN feedback.Comment: A&A in pres
- …