1,121 research outputs found
Modern Statistical Methods for GLAST Event Analysis
We describe a statistical reconstruction methodology for the GLAST LAT. The
methodology incorporates in detail the statistics of the interactions of
photons and charged particles with the tungsten layers in the LAT, and uses the
scattering distributions to compute the full probability distribution over the
energy and direction of the incident photons. It uses model selection methods
to estimate the probabilities of the possible geometrical configurations of the
particles produced in the detector, and numerical marginalization over the
energy loss and scattering angles at each layer. Preliminary results show that
it can improve on the tracker-only energy estimates for muons and electrons
incident on the LAT.Comment: To appear in the proceedings of the First GLAST Symposium (held at
Stanford University, 5-8 February 2007
A Parameterization Invariant Approach to the Statistical Estimation of the CKM Phase
In contrast to previous analyses, we demonstrate a Bayesian approach to the
estimation of the CKM phase that is invariant to parameterization. We
also show that in addition to {\em computing} the marginal posterior in a
Bayesian manner, the distribution must also be {\em interpreted} from a
subjective Bayesian viewpoint. Doing so gives a very natural interpretation to
the distribution. We also comment on the effect of removing information about
.Comment: 14 pages, 3 figures, 1 table, minor revision; to appear in JHE
Galactic center at very high-energies
Employing data collected during the first 25 months' observations by the
Fermi-LAT, we describe and subsequently seek to model the very high energy
(>300 MeV) emission from the central few parsecs of our Galaxy. We analyze the
morphological, spectral and temporal characteristics of the central source,
1FGL J1745.6-2900. Remarkably, the data show a clear, statistically significant
signal at energies above 10 GeV, where the Fermi-LAT has an excellent angular
resolution comparable to the angular resolution of HESS at TeV energies, which
makes meaningful the joint analysis of the Fermi and HESS data. Our analysis
does not show statistically significant variability of 1FGL J1745.6-2900. Using
the combination of Fermi data on 1FGL J1745.6-2900 and HESS data on the
coincident, TeV source HESS J1745-290, we show that the spectrum of the central
gamma-ray source is inflected with a relatively steep spectral region matching
between the flatter spectrum found at both low and high energies. We seek to
model the gamma-ray production in the inner 10 pc of the Galaxy and examine, in
particular, cosmic ray (CR) proton propagation scenarios that reproduce the
observed spectrum of the central source. We show that a model that instantiates
a transition from diffusive propagation of the CR protons at low energy to
almost rectilinear propagation at high energies (given a reasonable
energy-dependence of the assumed diffusion coefficient) can well explain the
spectral phenomenology. In general, however, we find considerable degeneracy
between different parameter choices which will only be broken with the addition
of morphological information that gamma-ray telescopes cannot deliver given
current angular resolution limits.We argue that a future analysis done in
combination with higher-resolution radio continuum data holds out the promise
of breaking this degeneracy.Comment: submitted to Ap
The Origin of the Extragalactic Gamma-Ray Background and Implications for Dark-Matter Annihilation
The origin of the extragalactic -ray background (EGB) has been
debated for some time. { The EGB comprises the -ray emission from
resolved and unresolved extragalactic sources, such as blazars, star-forming
galaxies and radio galaxies, as well as radiation from truly diffuse
processes.} This letter focuses on the blazar source class, the most numerous
detected population, and presents an updated luminosity function and spectral
energy distribution model consistent with the blazar observations performed by
the {\it Fermi} Large Area Telescope (LAT). We show that blazars account for
50\,\% of the EGB photons (0.1\,GeV), and that {\it Fermi}-LAT
has already resolved 70\,\% of this contribution. Blazars, and in
particular low-luminosity hard-spectrum nearby sources like BL Lacs, are
responsible for most of the EGB emission above 100\,GeV. We find that the
extragalactic background light, which attenuates blazars' high-energy emission,
is responsible for the high-energy cut-off observed in the EGB spectrum.
Finally, we show that blazars, star-forming galaxies and radio galaxies can
naturally account for the amplitude and spectral shape of the background in the
0.1--820\,GeV range, leaving only modest room for other contributions. This
allows us to set competitive constraints on the dark-matter annihilation cross
section.Comment: On behalf of the Fermi-LAT collaboration. Contact authors: M. Ajello,
D. Gasparrini, M. Sanchez-Conde, G. Zaharijas, M. Gustafsson. Accepted for
publication on ApJ
Gleam: the GLAST Large Area Telescope Simulation Framework
This paper presents the simulation of the GLAST high energy gamma-ray
telescope. The simulation package, written in C++, is based on the Geant4
toolkit, and it is integrated into a general framework used to process events.
A detailed simulation of the electronic signals inside Silicon detectors has
been provided and it is used for the particle tracking, which is handled by a
dedicated software. A unique repository for the geometrical description of the
detector has been realized using the XML language and a C++ library to access
this information has been designed and implemented.Comment: 10 pages, Late
Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT
Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are
hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV
gamma rays and TeV neutrinos on a time scale of several months. We perform the
first systematic search for gamma-ray emission in Fermi LAT data in the energy
range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding
in dense CSM. We search for a gamma-ray excess at each SNe location in a one
year time window. In order to enhance a possible weak signal, we simultaneously
study the closest and optically brightest sources of our sample in a
joint-likelihood analysis in three different time windows (1 year, 6 months and
3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf),
we repeat the analysis with an extended time window lasting 4.5 years. We do
not find a significant excess in gamma rays for any individual source nor for
the combined sources and provide model-independent flux upper limits for both
cases. In addition, we derive limits on the gamma-ray luminosity and the ratio
of gamma-ray-to-optical luminosity ratio as a function of the index of the
proton injection spectrum assuming a generic gamma-ray production model.
Furthermore, we present detailed flux predictions based on multi-wavelength
observations and the corresponding flux upper limit at 95% confidence level
(CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak
([email protected]), updated author list and acknowledgement
Recommended from our members
A Parameterization Invariant Approach to the Statistical Estimation of the CKM Phase alpha
In contrast to previous analyses, we demonstrate a Bayesian approach to the estimation of the CKM phase {alpha} that is invariant to parameterization. We also show that in addition to computing the marginal posterior in a Bayesian manner, the distribution must also be interpreted from a subjective Bayesian viewpoint. Doing so gives a very natural interpretation to the distribution. We also comment on the effect of removing information about {beta}{sup 00}
Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies
We present the first joint analysis of gamma-ray data from the MAGIC
Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for
gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We
combine 158 hours of Segue 1 observations with MAGIC with 6-year observations
of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the
annihilation cross-section for dark matter particle masses between 10 GeV and
100 TeV - the widest mass range ever explored by a single gamma-ray analysis.
These limits improve on previously published Fermi-LAT and MAGIC results by up
to a factor of two at certain masses. Our new inclusive analysis approach is
completely generic and can be used to perform a global, sensitivity-optimized
dark matter search by combining data from present and future gamma-ray and
neutrino detectors.Comment: 19 pages, 3 figures. V2: Few typos corrected and references added.
Matches published version JCAP 02 (2016) 03
- …
