269 research outputs found

    A strongly inhomogeneous superfluid in an iron-based superconductor

    Get PDF
    Among the mysteries surrounding unconventional, strongly correlated superconductors is the possibility of spatial variations in their superfluid density. We use atomic-resolution Josephson scanning tunneling microscopy to reveal a strongly inhomogeneous superfluid in the iron-based superconductor FeTe0.55Se0.45. By simultaneously measuring the topographic and electronic properties, we find that this inhomogeneity in the superfluid density is not caused by structural disorder or strong inter-pocket scattering, and does not correlate with variations in Cooper pair-breaking gap. Instead, we see a clear spatial correlation between superfluid density and quasiparticle strength, putting the iron-based superconductors on equal footing with the cuprates and demonstrating that locally, the quasiparticles are sharpest when the superconductivity is strongest. When repeated at different temperatures, our technique could further help elucidate what local and global mechanisms limit the critical temperature in unconventional superconductors

    Amplifier for scanning tunneling microscopy at MHz frequencies

    Full text link
    Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of circa 1kHz around DC. Here, we develop, build and test a novel amplifier circuit capable of measuring the tunneling current in the MHz regime while simultaneously performing conventional STM measurements. This is achieved with an amplifier circuit including a LC tank with a quality factor exceeding 600 and a home-built, low-noise high electron mobility transistor (HEMT). The amplifier circuit functions while simultaneously scanning with atomic resolution in the tunneling regime, i.e. at junction resistances in the range of giga-ohms, and down towards point contact spectroscopy. To enable high signal-to-noise and meet all technical requirements for the inclusion in a commercial low temperature, ultra-high vacuum STM, we use superconducting cross-wound inductors and choose materials and circuit elements with low heat load. We demonstrate the high performance of the amplifier by spatially mapping the Poissonian noise of tunneling electrons on an atomically clean Au(111) surface. We also show differential conductance spectroscopy measurements at 3MHz, demonstrating superior performance over conventional spectroscopy techniques. Further, our technology could be used to perform impedance matched spin resonance and distinguish Majorana modes from more conventional edge states

    Josephson and noise scanning tunneling microscopy on conventional, unconventional and disordered superconductors

    Get PDF
    In this thesis we use Josephson and noise scanning tunneling microscopy for the study of conventional, unconventional (iron-based) and disordered superconductors. On the one hand, Josephson scanning tunneling microscopy allows us to directly visualize the superfluid density with high spatial resolution. On the other hand, noise scanning tunneling microscopy is employed for measuring the shot noise which detects the charge of the carriers forming a superconducting condensate.Quantum Matter and Optic

    Privacy preserving and cost optimal mobile crowdsensing using smart contracts on blockchain

    Get PDF
    The popularity and applicability of mobile crowdsensing applications are continuously increasing due to the widespread of mobile devices and their sensing and processing capabilities. However, we need to offer appropriate incentives to the mobile users who contribute their resources and preserve their privacy. Blockchain technologies enable semi-anonymous multi-party interactions and can be utilized in crowdsensing applications to maintain the privacy of the mobile users while ensuring first-rate crowdsensed data. In this work, we propose to use blockchain technologies and smart contracts to orchestrate the interactions between mobile crowdsensing providers and mobile users for the case of spatial crowdsensing, where mobile users need to be at specific locations to perform the tasks. Smart contracts, by operating as processes that are executed on the blockchain, are used to preserve users’ privacy and make payments. Furthermore, for the assignment of the crowdsensing tasks to the mobile users, we design a truthful, cost-optimal auction that minimizes the payments from the crowdsensing providers to the mobile users. Extensive experimental results show that the proposed privacy preserving auction outperforms state-of-the-art proposals regarding cost by ten times for high numbers of mobile users and tasks. © 2018 IEEE.Peer reviewe

    SN 2006oz: rise of a super-luminous supernova observed by the SDSS-II SN Survey

    Get PDF
    We study SN 2006oz, a newly-recognized member of the class of H-poor, super-luminous supernovae. We present multi-color light curves from the SDSS-II SN Survey, that cover the rise time, as well as an optical spectrum that shows that the explosion occurred at z~0.376. We fitted black body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. The very early light curves show a dip in the g- and r-bands and a possible initial cooling phase in the u-band before rising to maximum light. The bolometric light curve shows a precursor plateau with a duration of 6-10 days in the rest-frame. A lower limit of M_u < -21.5 can be placed on the absolute peak luminosity of the SN, while the rise time is constrained to be at least 29 days. During our observations, the emitting sphere doubled its radius to 2x10^15 cm, while the temperature remained hot at 15000 K. As for other similar SNe, the spectrum is best modeled with elements including O II and Mg II, while we tentatively suggest that Fe III might be present. We suggest that the precursor plateau might be related to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post-maximum observations, and CSM interaction has difficulties accounting for the precursor plateau self-consistently. Radioactive decay is less likely to be the mechanism that powers the luminosity. The host galaxy, detected in deep imaging with the 10 m GTC, is a moderately young and star-forming, but not a starburst, galaxy. It has an absolute magnitude of M_g = -16.9.Comment: Contains minor changes (of editorial nature) with respect to v1 in order to match the published version. The abstract has been modified to fit the arXiv space requirements. 11 pages, 8 figures, 3 table

    Quark nova imprint in the extreme supernova explosion SN 2006gy

    Full text link
    The extremely luminous supernova 2006gy (SN 2006gy) is among the most energetic ever observed. The peak brightness was 100 times that of a typical supernova and it spent an unheard of 250 days at magnitude -19 or brighter. Efforts to describe SN 2006gy have pushed the boundaries of current supernova theory. In this work we aspire to simultaneously reproduce the photometric and spectroscopic observations of SN 2006gy using a quark nova model. This analysis considers the supernova explosion of a massive star followed days later by the quark nova detonation of a neutron star. We lay out a detailed model of the interaction between the supernova envelope and the quark nova ejecta paying special attention to a mixing region which forms at the inner edge of the supernova envelope. This model is then fit to photometric and spectroscopic observations of SN 2006gy. This QN model naturally describes several features of SN 2006gy including the late stage light curve plateau, the broad H{\alpha} line and the peculiar blue H{\alpha} absorption. We find that a progenitor mass between 20Msun and 40Msun provides ample energy to power SN 2006gy in the context of a QN.Comment: 15 pages, 9 figure

    SN2008am: A Super-Luminous Type IIn Supernova

    Get PDF
    We present observations and interpretation of the Type IIn supernova SN 2008am discovered by the ROTSE Supernova Verification Project (RSVP). SN 2008am peaked at approximately -22.3 mag at a redshift of z=0.2338, giving it a peak luminosity of 3 x 10^{44}erg/s and making it one of the most luminous supernovae ever observed. The total radiated energy is ~ 2 x 10^{51} erg. Photometric observations in the ultraviolet, optical and infrared bands (J,H,Ks) constrain the SED evolution. We obtained six optical spectra of the supernova, five on the early decline from maximum light and a sixth nearly a year later plus a very late-time spectrum (~2 yr) of the host galaxy. The spectra of SN 2008am show strong Balmer-line and He I lambda 5876A emission with intermediate widths (~25A) in the first ~40 days after optical maximum. We examine a variety of models for the line wings and conclude that multiple scattering is most likely, implying that our spectra contain no specific information on the bulk flow velocity. We examine a variety of models for the ROTSE light curve subject to the rise time and the nature of the spectra, including radioactive decay, shocks in optically-thick and optically-thin circumstellar media (CSM) and a magnetar. The most successful model is one for which the CSM is optically-thick and in which diffusion of forward shock-deposited luminosity gives rise to the observed light curve. Diffusion of the shock-deposited energy from the forward shock is found to be important to account for the rising part of the light curve. Although there are differences in detail, SN 2008am appears to be closely related to other super-luminous Type IIn supernovae, SN 2006gy, SN 2006tf and perhaps SN 2008iy, that may represent the deaths of very massive LBV-type progenitors and for which the luminosity is powered by the interaction of the ejecta with a dense circumstellar medium.Comment: 58 pages, 14 figure
    • …
    corecore