341 research outputs found
High-throughput synthesis of thermoelectric CaCoO films
Properties of complex oxide thin films can be tuned over a range of values as
a function of mismatch, composition, orientation, and structure. Here, we
report a strategy for growing structured epitaxial thermoelectric thin films
leading to improved Seebeck coefficient. Instead of using single-crystal
sapphire substrates to support epitaxial growth, CaCoO films are
deposited, using the Pulsed Laser Deposition technique, onto AlO
polycrystalline substrates textured by Spark Plasma Sintering. The structural
quality of the 2000 \AA thin film was investigated by Transmission Electron
Microscopy, while the crystallographic orientation of the grains and the
epitaxial relationships were determined by Electron Back Scatter Diffraction.
The use of a polycrystalline ceramic template leads to structured films that
are in good local epitaxial registry. The Seebeck coefficient is about 170
V/K at 300 K, a typical value of misfit material with low carrier density.
This high-throughput process, called combinatorial substrate epitaxy, appears
to facilitate the rational tuning of functional oxide films, opening a route to
the epitaxial synthesis of high quality complex oxides.Comment: Submitted to Applied Physics Letters (2013
Growth and texture of Spark Plasma Sintered Al2O3 ceramics: a combined analysis of X-rays and Electron Back Scatter Diffraction
Textured alumina ceramics were obtained by Spark Plasma Sintering (SPS) of
undoped commercial a-Al2O3 powders. Various parameters (density, grain growth,
grain size distribution) of the alumina ceramics, sintered at two typical
temperatures 1400{\deg}C and 1700{\deg}C, are investigated. Quantitative
textural and structural analysis, carried out using a combination of Electron
Back Scattering Diffraction (EBSD) and X-ray diffraction (XRD), are represented
in the form of mapping, and pole figures. The mechanical properties of these
textured alumina ceramics include high elastic modulus and hardness value with
high anisotropic nature, opening the door for a large range of applicationsComment: 16 pages, 6 figures, submitted to J. Appl. Phy
Crystallographic and Seismic Anisotropies of Calcite at Different Depths : a Study Using Quantitative Texture Analysis by Neutron Diffraction
Eight samples of limestones and marbles were studied by neutron diffraction to collect quantitative texture (i.e., crystallographic preferred orientations or CPO) of calcite deforming at different depths in the crust. We studied the different Texture patterns developed in shear zones at different depth and their influence on seismic anisotropies. Samples were collected in the French and Italian Alps, Apennines, and Paleozoic Sardinian basement. They are characterized by isotropic to highly anisotropic (e.g., mylonite shear zone) fabrics. Mylonite limestones occur as shear zone horizons within the Cenozoic Southern Domain in Alpine thrust-and-fold belts (Italy), the Brian\ue7onnais domain of the Western Alps (Italy-France border), the Sardinian Paleozoic back-thrusts, or in the Austroalpine intermediate units. The analyzed marbles were collected in the Carrara Marble, in the Austroalpine Units in the Central (Mortirolo) and Western Alps (Valpelline). The temperature and depth of development of fabrics vary from <100\u25e6C, to 800\u25e6C and depth from <10 km to about 30 km, corresponding from upper to lower crust conditions. Quantitative Texture Analysis shows different types of patterns for calcite: random to strongly textured. Textured types may be further separated in orthorhombic and monoclinic (Types A and B), based on the angle defined with the mesoscopic fabrics. Seismic anisotropies were calculated by homogenizing the single-crystal elastic tensor, using the Orientation Distribution Function calculated by Quantitative Texture Analysis. The resulting P-and S-wave anisotropies show a wide variability due to the textural types, temperature and pressure conditions, and dip of the shear planes
Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales
X-ray textural and microstructural characterisations by using the Combined Analysis Approach for the optical optimisation of micro-and nano-structured thin films
Nano/micro-crystalline silicon, silicon carbide and zinc selenide sputtered films are chosen to illustrate the potentialities of the X-ray Combined Analysis methodology in characterising textures, structures, residual stresses, phase amounts, twin faults, layer thicknesses and crystallite sizes and shapes. The observed textures range from weak (in Si and SiC films) to very strong (in ZnSe). In all films, crystallites are found anisotropic in shapes and sizes. In nc-Si, no residual stress is observed, but the cell parameters deviate from bulk values due to crystal size reduction. The layer thickness as probed by X-ray diffraction imposes films porosities. In unstressed SiC films the two polymorph phases (hexagonal and cubic) are present and both are textured. In ZnSe films, a ratio of around 55/45 for the cubic and hexagonal phases respectively is quantified and large tensile in-plane residual stresses reaching several hundreds of MPa calculated
Texture analysis by the Schulz reflection method: defocalization corrections for thin films
The 3D quantitative lattice and shape preferred orientation of a mylonitised metagranite from Monte Rosa (Western Alps): Combining neutron diffraction texture analysis and synchrotron X-ray microtomography
Two complementary 3D techniques, neutron diffraction and synchrotron X-ray microtomography (SXR-\u3bcCT), were used to compare the Shape and Lattice Preferred Orientations of a mylonitised metagranite from the Monte Rosa unit (Western Alps, Italy). The goal of using these techniques was to obtain two different orientation distribution functions. Although the two functions describe relatively independent characteristics of the rock fabric, nonetheless they also exhibit close relationships to macroscopic fabrics and may be complementarily used to quantify rock fabrics and microstructures, thereby highlighting 3D features that cannot be obtained with either technique, if used independently. We describe an approach that can be potentially useful in various disciplines, e.g., structural geology, rock mechanics, tectonics and geophysics, when a complete data set of preferred orientations and size distribution is needed.Micas display a strong orthorhombic symmetry between mesoscopic lineation and microscopic SPO and LPO, whereas quartz and feldspars are characterised by a monoclinic symmetry between mesoscopic lineation and LPO. These observations suggest a rheological decoupling between the weak phase mica layers and the stronger quartz+feldspar layers. This mechanical decoupling occurred during the Alpine subduction-collision, when the Monte Rosa unit was part of the Insubric Line system and accommodated large vertical strain
Perforated monodomain YBa 2 Cu 3 O 7-x bulk superconductors prepared by infiltration-growth process
Abstract : For various applications such as FCL, motor flyweel or bearing, ... the core of bulk superconductors need to be fully oxygenated and some defects like cracks, pores and voids suppressed, in order that the material can carry high current densities. In order to study and minimise the above defects, we have developed a new elaboration technique. YBa 2 Cu 3 O y (Y123) bulks have been prepared by combining liquid infiltration and top seed growth (ITSG) process. This process involves negligible shrinkage and an uniform distribution of Y211 inclusions. In addition, we prepare a regular perforation of the Y123 sample in view to magnify the specific surface and by then increase oxygen diffusion into the core of the material. Neutron texture analysis demonstrates the nonperturbative effect of the holes in the bulk from the orientation point of view. The advantages of the ITSG-process and of the novel perforated Y123 bulk are discussed
- …
