X-ray textural and microstructural characterisations by using the Combined Analysis Approach for the optical optimisation of micro-and nano-structured thin films

Abstract

Nano/micro-crystalline silicon, silicon carbide and zinc selenide sputtered films are chosen to illustrate the potentialities of the X-ray Combined Analysis methodology in characterising textures, structures, residual stresses, phase amounts, twin faults, layer thicknesses and crystallite sizes and shapes. The observed textures range from weak (in Si and SiC films) to very strong (in ZnSe). In all films, crystallites are found anisotropic in shapes and sizes. In nc-Si, no residual stress is observed, but the cell parameters deviate from bulk values due to crystal size reduction. The layer thickness as probed by X-ray diffraction imposes films porosities. In unstressed SiC films the two polymorph phases (hexagonal and cubic) are present and both are textured. In ZnSe films, a ratio of around 55/45 for the cubic and hexagonal phases respectively is quantified and large tensile in-plane residual stresses reaching several hundreds of MPa calculated

    Similar works