230 research outputs found

    Short Term Effect of Crop Residue and Different Nitrogen Levels on Grain yield of Wheat under Rice-Wheat System

    Full text link
    Crop residues are very important source of plant nutrients and recycling of crop residues with inorganic fertilizer increases the yield of rice and wheat in rice-wheat system. The objective of the study was to determine the production and productivity of wheat as affected by management of crop residues and different nitrogen levels. The field experiments were carried out in 2014 and 2015 at National Wheat Research Program, Bhairahawa, Nepal and the field was laid out in split plot design: two crop residue levels (with and without residues) as whole plot and seven nitrogen levels (0, 25, 50, 75,100, 125, 150 kg/ha) as sub-plot which were replicated three times. Significant difference was observed with crop residues incorporation in biological yield with the value of 5538 kg/ha as compared to without residue incorporation (4167 kg/ha) in 2014. Similar result was observed in 2015 as highest significant biological yield of 6629 kg/ha was recorded from residue incorporation plot. On the other hand, application of nitrogen @ 150 kg/ha resulted to significantly highest grain yield of 2593 and 3073 kg/ha in both years (2014 and 2015) respectively. The overall conclusion is that an improved crop residue management with appropriate dose of chemical fertilizer increases the grain yield of wheat in short term basis

    A reference relative time-scale as an alternative to chronological age for cohorts with long follow-up

    Get PDF
    Background: Epidemiologists have debated the appropriate time-scale for cohort survival studies; chronological age or time-on-study being two such time-scales. Importantly, assessment of risk factors may depend on the choice of time-scale. Recently, chronological or attained age has gained support but a case can be made for a ‘reference relative time-scale’ as an alternative which circumvents difficulties that arise with this and other scales. The reference relative time of an individual participant is the integral of a reference population hazard function between time of entry and time of exit of the individual. The objective here is to describe the reference relative time-scale, illustrate its use, make comparison with attained age by simulation and explain its relationship to modern and traditional epidemiologic methods. Results: A comparison was made between two models; a stratified Cox model with age as the time-scale versus an un-stratified Cox model using the reference relative time-scale. The illustrative comparison used a UK cohort of cotton workers, with differing ages at entry to the study, with accrual over a time period and with long follow-up. Additionally, exponential and Weibull models were fitted since the reference relative time-scale analysis need not be restricted to the Cox model. A simulation study showed that analysis using the reference relative time-scale and analysis using chronological age had very similar power to detect a significant risk factor and both were equally unbiased. Further, the analysis using the reference relative time-scale supported fully-parametric survival modelling and allowed percentile predictions and mortality curves to be constructed. Conclusions: The reference relative time-scale was a viable alternative to chronological age, led to simplification of the modelling process and possessed the defined features of a good time-scale as defined in reliability theory. The reference relative time-scale has several interpretations and provides a unifying concept that links contemporary approaches in survival and reliability analysis to the traditional epidemiologic methods of Poisson regression and standardised mortality ratios. The community of practitioners has not previously made this connection

    Data-precoded algorithm for multiple-relay-assisted systems

    Get PDF
    A data-precoded relay-assisted (RA) scheme is proposed for a system cooperating with multiple relay nodes (RNs), each equipped with either a single-antenna or a two-antenna array. The classical RA systems using distributed space-time/frequency coding algorithms, because of the half-duplex constraint at the relays, require the use of a higher order constellation than in the case of a continuous link transmission from the base station to the user terminal. This implies a penalty in the power efficiency. The proposed precoding algorithm exploits the relation between QPSK and 4 L -QAM, by alternately transmitting through L relays, achieving full diversity, while significantly reducing power penalty. This algorithm explores the situations where a direct path (DP) is not available or has poor quality, and it is a promising solution to extend coverage or increase system capacity. We present the analytical derivation of the gain obtained with the data-precoded algorithm in comparison with distributed space-frequency block code (SFBC) ones. Furthermore, analysis of the pairwise error probability of the proposed algorithm is derived and confirmed with numerical results. We evaluate the performance of the proposed scheme and compare it relatively to the equivalent distributed SFBC scheme employing 16-QAM and non-cooperative schemes, for several link quality scenarios and scheme configurations, highlighting the advantages of the proposed scheme

    Novel precoded relay-assisted algorithm for cellular systems

    Get PDF
    Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC

    Temperature mapping of stacked silicon dies from x-ray diffraction intensities

    Full text link
    Increasing power densities in integrated circuits has led to an increased prevalence of thermal hotspots in integrated circuits. Tracking these thermal hotspots is imperative to prevent circuit failures. In 3D integrated circuits, conventional surface techniques like infrared thermometry are unable to measure 3D temperature distribution and optical and magnetic resonance techniques are difficult to apply due to the presence of metals and large current densities. X-rays offer high penetration depth and can be used to probe 3D structures. We report a method utilizing the temperature dependence of x-rays diffraction intensity via the Debye-Waller factor to simultaneously map the temperature of an individual silicon die that is a part of a stack of dies. Utilizing beamline 1-ID-E at the Advanced Photon Source (Argonne), we demonstrate for each individual silicon die, a temperature resolution of 3 K, a spatial resolution of 100 um x 400 um and a temporal resolution of 20 s. Utilizing a sufficiently high intensity laboratory source, e.g., from a liquid anode source, this method can be scaled down to laboratories for non-invasive temperature mapping of 3D integrated circuits

    Novel precoded relay-assisted algorithm for cellular systems

    Get PDF
    Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC

    Novel precoded relay-assisted algorithm for cellular systems

    Get PDF
    Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC

    Impact of air pollution on global burden of disease in 2019

    Get PDF
    Air pollution consisting of ambient air pollution and household air pollution (HAP) threatens health globally. Air pollution aggravates the health of vulnerable people such as infants, children, women, and the elderly as well as people with chronic diseases such as cardiorespiratory illnesses, little social support, and poor access to medical services. This study is aimed to estimate the impact of air pollution on global burden of disease (GBD). We extracted data about mortality and disability adjusted life years (DALYs) attributable to air pollution from 1990 to 2019. The extracted data were then organized and edited into a usable format using STATA version 15. Furthermore, we also estimated the impacts for three categories based on their socio-demographic index (SDI) as calculated by GBD study. The impacts of air pollution on overall burden of disease by SDI, gender, type of pollution, and type of disease is estimated and their trends over the period of 1990 to 2019 are presented. The attributable burden of ambient air pollution is increasing over the years while attributable burden of HAP is declining over the years, globally. The findings of this study will be useful for evidence-based planning for prevention and control of air pollution and reduction of burden of disease from air pollution at global, regional, and national levels

    Cover Crops and Returning Residue Impact on Soil Organic Carbon, Bulk Density, Penetration Resistance, Water Retention, Infiltration, and Soybean Yield

    Get PDF
    Residue management with cover crops (CC) can conserve soil moisture and thus has a potential to increase crop yield, but its effectiveness varies significantly by region and cropping system management. A study was conducted at Brookings, SD, on finesilty, mixed, superactive, frigid, Calcic/Pachic Hapludolls soils to understand the impact of CC and crop residue on soil properties and soil-water dynamics for soybean (Glycine max L.) crop grown after corn (Zea mays L.). The site had two crop residue treatments (residue returned [RR] and residue not returned [RNR]) under a no-till corn–soybean rotation. Each residue returned treatment was later subdivided to include CC and no CC (NCC) treatments. Results from this 3 yr (2014, 2015, and 2016) study showed that RR (1.30 Mg m–3) had 7% lower bulk density (BD) compared to the RNR (1.40 Mg m–3). Soil organic carbon (SOC) was 22% higher under RR (26.2 g kg–1) compared to RNR (21.5 g kg–1). Soil water infiltration was 66% higher under RR (108 mm h–1) compared to RNR (64.8 mm h–1). Similarly, soil water infiltration in CC treatment (111 mm h–1) was 80% higher compared to NCC (61.7 mm h–1). The RR with CC treatment increased soil volumetric water content and soil water storage. Overall, the CC increased soybean yield by 14% compared to NCC. Data from this study suggest that the use of CC with RR are beneficial for improving soil properties, conserving soil moisture and enhancing crop yield
    corecore