132 research outputs found
Hydrodynamic fluctuations and the minimum shear viscosity of the dilute Fermi gas at unitarity
We study hydrodynamic fluctuations in a non-relativistic fluid. We show that
in three dimensions fluctuations lead to a minimum in the shear viscosity to
entropy density ratio as a function of the temperature. The minimum
provides a bound on which is independent of the conjectured bound in
string theory, , where is the entropy
density. For the dilute Fermi gas at unitarity we find \eta/s\gsim 0.2\hbar.
This bound is not universal -- it depends on thermodynamic properties of the
unitary Fermi gas, and on empirical information about the range of validity of
hydrodynamics. We also find that the viscous relaxation time of a hydrodynamic
mode with frequency diverges as , and that the shear
viscosity in two dimensions diverges as .Comment: 26 pages, 5 figures; final version to appear in Phys Rev
Searching for Perfect Fluids: Quantum Viscosity in a Universal Fermi Gas
We measure the shear viscosity in a two-component Fermi gas of atoms, tuned
to a broad s-wave collisional (Feshbach) resonance. At resonance, the atoms
strongly interact and exhibit universal behavior, where the equilibrium
thermodynamic properties and the transport coefficients are universal functions
of the density and temperature . We present a new calibration of the
temperature as a function of global energy, which is directly measured from the
cloud profiles. Using the calibration, the trap-averaged shear viscosity in
units of is determined as a function of the reduced temperature at
the trap center, from nearly the ground state to the unitary two-body regime.
Low temperature data is obtained from the damping rate of the radial breathing
mode, while high temperature data is obtained from hydrodynamic expansion
measurements. We also show that the best fit to the high temperature expansion
data is obtained for a vanishing bulk viscosity. The measured trap-averaged
entropy per particle and shear viscosity are used to estimate the ratio of the
shear viscosity to the entropy density, which is compared that conjectured for
a perfect fluid.Comment: 20 pages, 10 figure
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription
Kinases and phosphatases regulate messenger RNA synthesis through post-translational modification of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (ref. 1). In yeast, the phosphatase Cdc14 is required for mitotic exit2,3 and for segregation of repetitive regions4. Cdc14 is also a subunit of the silencing complex RENT (refs 5, 6), but no roles in transcriptional repression have been described. Here we report that inactivation of Cdc14 causes silencing defects at the intergenic spacer sequences of ribosomal genes during interphase and at Y′ repeats in subtelomeric regions during mitosis. We show that the role of Cdc14 in silencing is independent of the RENT deacetylase subunit Sir2. Instead, Cdc14 acts directly on RNA polymerase II by targeting CTD phosphorylation at Ser 2 and Ser 5. We also find that the role of Cdc14 as a CTD phosphatase is conserved in humans. Finally, telomere segregation defects in cdc14 mutants4 correlate with the presence of subtelomeric Y′ elements and can be rescued by transcriptional inhibition of RNA polymerase II
Biological and trophic consequences of genetic introgression between endemic and invasive Barbus fishes.
Genetic introgression with native species is recognized as a detrimental impact resulting from biological invasions involving taxonomically similar invaders. Whilst the underlying genetic mechanisms are increasingly understood, the ecological consequences of introgression are relatively less studied, despite their utility for increasing knowledge on how invasion impacts can manifest. Here, the ecological consequences of genetic introgression from an invasive congener were tested using the endemic barbel populations of central Italy, where the invader was the European barbel Barbus barbus. Four populations of native Barbus species (B. plebejus and B. tyberinus) were studied: two purebred and two completely introgressed with alien B. barbus. Across the four populations, differences in their biological traits (growth, body condition and population demographic structure) and trophic ecology (gut content analysis and stable isotope analysis) were tested. While all populations had similar body condition and were dominated by fish up to 2 years of age, the introgressed fish had substantially greater lengths at the same age, with maximum lengths 410-460 mm in hybrids versus 340-360 mm in native purebred barbel. The population characterized by the highest number of introgressed B. barbus alleles (81 %) had the largest trophic niche and a substantially lower trophic position than the other populations through its exploitation of a wider range of resources (e.g. small fishes and plants). These results attest that the genetic introgression of an invasive congener with native species can result in substantial ecological consequences, including the potential for cascading effects. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-021-02577-6
Epidermal growth factor receptor immunohistochemistry: new opportunities in metastatic colorectal cancer
Characterization of Ground-Water Quality, Upper Republican Natural Resources District, Nebraska, 1998–2001
Nearly all rural inhabitants and livestock in the Upper Republican Natural Resources District (URNRD) in southwestern Nebraska use ground water that can be affected by elevated nitrate concentrations. The development of ground-water irrigation in this area has increased the vulnerability of ground water to the introduction of fertilizers and other agricultural chemicals. In 1998, the U.S. Geological Survey, in cooperation with the Upper Republican Natural Resources District, began a study to characterize the quality of ground water in the Upper Republican Natural Resources District area with respect to physical properties and concentrations of major ions, coliform bacteria, nitrate, and pesticides, and to assess the presence of nitrogen concentrations in the unsaturated zone. At selected well sites, the ground-water characterization also included tritium and nitrogen-isotope analyses to provide information about the approximate age of the ground water and potential sources of nitrogen detected in ground-water samples, respectively. In 1998, ground-water samples were collected from 101 randomly selected domestic-well sites. Of the 101 samples collected, 26 tested positive for total coliform bacteria, exceeding the U.S. Environmental Protection Agency’s Maximum Contaminant Level (MCL) of zero colonies. In 1999, ground-water samples were collected from 31 of the 101 well sites, and 16 tested positive for coliform bacteria. Nitrates were detected in ground water from all domestic-well samples and from all but four of the irrigation-well samples collected from 1998 to 2001. Eight percent of the domestic-well samples and 3 percent of the irrigation-well samples had nitrate concentrations exceeding the U.S. Environmental Protection Agency’s MCL for drinking water of 10 milligrams per liter. Areas with nitrate concentrations exceeding 6 milligrams per liter, the URNRD’s ground-water management-plan action level, were found predominantly in north-central Chase, western and south-central Dundy, and south-central Perkins Counties. Generally, these concentrations were detected in samples from wells located in upland areas with permeable soils and a high percentage of cropland. In 1999, 31 of the ground-water samples collected from irrigation wells were analyzed for pesticides, and 14 samples (45 percent) had detectable concentrations of at least one pesticide compound. In 2000, all of the 23 irrigation-well samples analyzed had one or more pesticides present at detectable concentrations. In 2001, 12 of 26 domestic-well samples (46 percent) had detectable concentrations. Although the analytical method used during the study was changed to increase the number of pesticides included in the analyses, the pesticides detected in the ground-water samples from domestic and irrigation wells were limited to the commonly used herbicide compounds acetochlor, alachlor, atrazine, metolachlor, prometon, propachlor, propazine, trifluralin, and the atrazine degradation product deethylatrazine. Of the compounds detected, only atrazine (3.0 micrograms per liter) and alachlor (2.0 micrograms per liter) have MCLs established by the U.S. Environmental Protection Agency. None of the ground-water samples from the URNRD study area had concentrations that exceeded either MCL. Tritium age-dating analyses indicate water from about one-third of the sites entered the ground-water system prior to 1952. Because the increase in agricultural practices occurred during the 1950s and 1960s, it can be assumed that this water was not influenced by agricultural practices. Nitrogen-isotope speciation analyses for samples from three irrigation wells indicated that the source of nitrates in the ground water probably is synthetic fertilizer; however, the source at most irrigation wells probably is either naturally occurring or a mixture of water from various anthropogenic sources (such as synthetic fertilizer and animal waste)
- …
