188 research outputs found

    Reply to : Cause or consequence?

    Get PDF
    Funding AstraZeneca funded the SABINA III study; was involved in the study design, protocol development, study conduct and statistical analysis; and was given the opportunity to review this manuscript before submission. Publication support was provided by Michelle Rebello, PhD, of Cactus Life Sciences and funded by AstraZeneca.Peer reviewedPostprin

    Short-acting β2-agonist prescriptions are associated with poor clinical outcomes of asthma : the multi-country, cross-sectional SABINA III study

    Get PDF
    Data sharing Data underlying the findings described in this manuscript may be obtained in accordance with AstraZeneca’s data sharing policy described at https://astrazenecagrouptrials.pharmacm.com/ST/Submission/Disclosure. Acknowledgements Editorial support was provided by Michelle Rebello, PhD, CMPP, of Cactus Life Sciences (part of Cactus Communications, Mumbai, India) in accordance with Good Publication Practice (GPP3) guidelines (http://www.ismpp.org/gpp3). This support was fully funded by AstraZeneca. Support statement AstraZeneca funded the study; was involved in the study design, protocol development, study conduct and statistical analysis; and was given the opportunity to review the manuscript before submission. AstraZeneca also funded medical writing support. All authors had full access to all the data, wrote the report and accept responsibility for its publication.Peer reviewedPostprin

    Multiple Orbitoides d’Orbigny lineages in the Maastrichtian? Data from the Central Sakarya Basin (Turkey) and Arabian Platform successions (Southeastern Turkey and Oman)

    Get PDF
    The standard reconstruction of species of Orbitoides d’Orbigny into a single lineage during the late Santonian to the end of the Maastrichtian is based upon morphometric data from Western Europe. An irreversible increase in the size of the embryonic apparatus, and the formation of a greater number of epi-embryonic chamberlets (EPC) with time, is regarded as the main evolutionary trends used in species discrimination. However, data from Maastrichtian Orbitoides assemblages from Central Turkey and the Arabian Platform margin (Southeastern Turkey and Oman) are not consistent with this record. The Maastrichtian Besni Formation of the Arabian Platform margin in Southeastern Turkey yields invariably biconvex specimens, with small, tri- to quadrilocular embryons and a small number of EPC, comparable to late Campanian Orbitoides medius (d’Archiac). The upper Maastrichtian Taraklı Formation from the Sakarya Basin of Central Turkey contains two distinct, yet closely associated forms of Orbitoides, easily differentiated by both external and internal features. Flat to biconcave specimens possess a small, tri- to quadrilocular embryonic apparatus of Orbitoides medius-type and a small number of EPC, whereas biconvex specimens possess a large, predominantly bilocular embryonic apparatus, and were assigned to Orbitoides ex. interc. gruenbachensis Papp–apiculatus Schlumberger based on morphometry. The flat to biconcave specimens belong to a long overlooked species Orbitoides pamiri Meriç, originally described from the late Maastrichtian of the Tauride Mountains in SW Turkey. This species is herein interpreted to be an offshoot from the main Orbitoides lineage during the Maastrichtian, as are forms that we term Orbitoides ‘medius’, since they recall this species, yet are younger than normal occurrence with the accepted morphometrically defined lineage. The consistent correlation between the external and internal test features in O. pamiri implies that the shape of the test is not an ecophenotypic variation, but appears to be biologically controlled. We, therefore, postulate that more than one lineage of Orbitoides exists during the Maastrichtian, with a lineage that includes O. ‘medius’ and O. pamiri displaying retrograde evolutionary features

    Multiple Orbitoides d’Orbigny lineages in the Maastrichtian? Data from the Central Sakarya Basin (Turkey) and Arabian Platform successions (Southeastern Turkey and Oman)

    Get PDF
    The standard reconstruction of species of Orbitoides d'Orbigny into a single lineage during the late Santonian to the end of the Maastrichtian is based upon morphometric data from Western Europe. An irreversible increase in the size of the embryonic apparatus, and the formation of a greater number of epi-embryonic chamberlets (EPC) with time, is regarded as the main evolutionary trends used in species discrimination. However, data from Maastrichtian Orbitoides assemblages from Central Turkey and the Arabian Platform margin (Southeastern Turkey and Oman) are not consistent with this record. The Maastrichtian Besni Formation of the Arabian Platform margin in Southeastern Turkey yields invariably biconvex specimens, with small, tri- to quadrilocular embryons and a small number of EPC, comparable to late Campanian Orbitoides medius (d'Archiac). The upper Maastrichtian Tarakli Formation from the Sakarya Basin of Central Turkey contains two distinct, yet closely associated forms of Orbitoides, easily differentiated by both external and internal features. Flat to biconcave specimens possess a small, tri- to quadrilocular embryonic apparatus of Orbitoides medius-type and a small number of EPC, whereas biconvex specimens possess a large, predominantly bilocular embryonic apparatus, and were assigned to Orbitoides ex. interc. gruenbachensis Papp-apiculatus Schlumberger based on morphometry. The flat to biconcave specimens belong to a long overlooked species Orbitoides pamiri Meric, originally described from the late Maastrichtian of the Tauride Mountains in SW Turkey. This species is herein interpreted to be an offshoot from the main Orbitoides lineage during the Maastrichtian, as are forms that we term Orbitoides 'medius', since they recall this species, yet are younger than normal occurrence with the accepted morphometrically defined lineage. The consistent correlation between the external and internal test features in O. pamiri implies that the shape of the test is not an ecophenotypic variation, but appears to be biologically controlled. We, therefore, postulate that more than one lineage of Orbitoides exists during the Maastrichtian, with a lineage that includes O. 'medius' and O. pamiri displaying retrograde evolutionary features

    Rock magnetic signature of the Middle Eocene Climatic Optimum (MECO) event in different oceanic basins

    Get PDF
    The Middle Eocene Climatic Optimum (MECO) event at ~40 Ma was a greenhouse warming which indicates an abrupt reversal in long-term cooling through the middle Eocene. Here, we present environmental and rock magnetic data from sedimentary successions from the Indian Ocean (ODP Hole 711A) and eastern NeoTethys (Monte Cagnero section - MCA). The high-resolution environmental magnetism record obtained for MCA section shows an interval of increase of magnetic parameters comprising the MECO peak. A relative increase in eutrophic nannofossil taxa spans the culmination of the MECO warming and its aftermath and coincides with a positive carbon isotope excursion, and a peak in magnetite and hematite/goethite concentrations. The magnetite peak reflects the appearance of magnetofossils, while the hematite/goethite apex are attributed to an enhanced detrital mineral contribution, likely related to aeolian dust transported from the continent adjacent to the Neo-Tethys Ocean during a drier, more seasonal MECO climate. Seasurface iron fertilization is inferred to have stimulated high phytoplankton productivity, increasing organic carbon export to the seafloor and promoting enhanced biomineralization of magnetotactic bacteria, which are preserved as magnetofossils during the warmest periods of the MECO event. Environmental magnetic parameters show the same behavior for ODP Hole 711A. We speculate that iron fertilization promoted by aeolian hematite during the MECO event has contributed significantly to increase the primary productivity in the oceans. The widespread occurrence of magnetofossils in other warming periods suggests a common mechanism linking climate warming and enhancement of magnetosome production and preservation

    Impacto del factor peopleware en la implantación de sistemas informáticos

    Get PDF
    El presente trabajo de investigación pretende realizar aportaciones al proceso de implantación de sistemas informáticos con un foco en como el peopleware que interviene en el proceso, lo afecta. Se pretende identificar los elementos que componen un modelo de proceso de software; con énfasis en el proceso de implantación. Los enfoques de los modelos actuales no custodian el factor peopleware como un factor de éxito de los proyectos de software, en consecuencia no miran de manera integral las características técnicas, los aspectos humanos y de organización del proceso de software. En este proyecto se formula una investigación documental sobre procesos de implantación de sistemas informáticos embebidos en los modelos de procesos de Ingeniería de Software de los estándares actuales, entre los considerados están IEEE 1074, Métrica versión 3, MoProSoft, Proceso Unificado de Rational, Programación Extrema, Scrum, Método de Desarrollo de Sistemas Dinámicos, Proceso Unificado Ágil. El proyecto de investigación buscará identificar debilidades en la dimensión peopleware de cada uno de estos estándares y formular aportaciones paliativas en la fase de implantación del modelo de proceso considerado. Se realizará pruebas de concepto en los casos de estudio y casos de validación identificados que corroboren el modelo de proceso propuesto.Eje: Ingeniería de Software.Red de Universidades con Carreras en Informática (RedUNCI

    LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell

    Get PDF
    Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/.JS is supported by an OCE Postdoctoral Fellowship
    corecore