989 research outputs found
Decoherence of electron spin qubits in Si-based quantum computers
Direct phonon spin-lattice relaxation of an electron qubit bound by a donor
impurity or quantum dot in SiGe heterostructures is investigated. The aim is to
evaluate the importance of decoherence from this mechanism in several important
solid-state quantum computer designs operating at low temperatures. We
calculate the relaxation rate as a function of [100] uniaxial strain,
temperature, magnetic field, and silicon/germanium content for Si:P bound
electrons. The quantum dot potential is much smoother, leading to smaller
splittings of the valley degeneracies. We have estimated these splittings in
order to obtain upper bounds for the relaxation rate. In general, we find that
the relaxation rate is strongly decreased by uniaxial compressive strain in a
SiGe-Si-SiGe quantum well, making this strain an important positive design
feature. Ge in high concentrations (particularly over 85%) increases the rate,
making Si-rich materials preferable. We conclude that SiGe bound electron
qubits must meet certain conditions to minimize decoherence but that
spin-phonon relaxation does not rule out the solid-state implementation of
error-tolerant quantum computing.Comment: 8 figures. To appear in PRB-July 2002. Revisions include: some
references added/corrected, several typos fixed, a few things clarified.
Nothing dramati
CFD Models of a Serpentine Inlet, Fan, and Nozzle
Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fa
Electrical properties of isotopically enriched neutron-transmutation-doped ^{70} Ge:Ga near the metal-insulator transition
We report the low temperature carrier transport properties of a series of
nominally uncompensated neutron-transmutation doped (NTD) ^{70} Ge:Ga samples
very close to the critical concentration N_c for the metal-insulator
transition. The concentration of the sample closest to N_c is 1.0004N_c and it
is unambiguously shown that the critical conductivity exponent is 0.5.
Properties of insulating samples are discussed in the context of Efros and
Shklovskii's variable range hopping conduction.Comment: 8 pages using REVTeX, 8 figures, published versio
Localization length and impurity dielectric susceptibility in the critical regime of the metal-insulator transition in homogeneously doped p-type Ge
We have determined the localization length \xi and the impurity dielectric
susceptibility \chi_{\rm imp} as a function of Ga acceptor concentrations (N)
in nominally uncompensated ^{70}Ge:Ga just below the critical concentration
(N_c) for the metal-insulator transition. Both \xi and \chi_{\rm imp} diverge
at N_c according to the functions \xi\propto(1-N/N_c)^{-\nu} and \chi_{\rm
imp}\propto(N_c/N-1)^{-\zeta}, respectively, with \nu=1.2\pm0.3 and
\zeta=2.3\pm0.6 for 0.99N_c< N< N_c. Outside of this region (N<0.99N_c), the
values of the exponents drop to \nu=0.33\pm0.03 and \zeta=0.62\pm0.05. The
effect of the small amount of compensating dopants that are present in our
nominally uncompensated samples, may be responsible for the change of the
critical exponents at N\approx0.99N_c.Comment: RevTeX, 4 pages with 5 embedded figures, final version (minor
changes
Crystal Field and Dzyaloshinsky-Moriya Interaction in orbitally ordered La_{0.95}Sr_{0.05}MnO_3: An ESR Study
We present a comprehensive analysis of Dzyaloshinsky-Moriya interaction and
crystal-field parameters using the angular dependence of the paramagnetic
resonance shift and linewidth in single crystals of La_{0.95}Sr_{0.05}MnO_3
within the orthorhombic Jahn-Teller distorted phase. The Dzyaloshinsky-Moriya
interaction (~ 1K) results from the tilting of the MnO_6 octahedra against each
other. The crystal-field parameters D and E are found to be of comparable
magnitude (~ 1K) with D ~= -E. This indicates a strong mixing of the |3z^2-r^2>
and |x^2-y^2> states for the real orbital configuration.Comment: 12 pages, 6 figure
Stability of sub-surface oxygen at Rh(111)
Using density-functional theory (DFT) we investigate the incorporation of
oxygen directly below the Rh(111) surface. We show that oxygen incorporation
will only commence after nearly completion of a dense O adlayer (\theta_tot =
1.0 monolayer) with O in the fcc on-surface sites. The experimentally suggested
octahedral sub-surface site occupancy, inducing a site-switch of the on-surface
species from fcc to hcp sites, is indeed found to be a rather low energy
structure. Our results indicate that at even higher coverages oxygen
incorporation is followed by oxygen agglomeration in two-dimensional
sub-surface islands directly below the first metal layer. Inside these islands,
the metastable hcp/octahedral (on-surface/sub-surface) site combination will
undergo a barrierless displacement, introducing a stacking fault of the first
metal layer with respect to the underlying substrate and leading to a stable
fcc/tetrahedral site occupation. We suggest that these elementary steps,
namely, oxygen incorporation, aggregation into sub-surface islands and
destabilization of the metal surface may be more general and precede the
formation of a surface oxide at close-packed late transition metal surfaces.Comment: 9 pages including 9 figure files. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
X-Band ESR Determination of Dzyaloshinsky-Moriya Interaction in 2D SrCu(BO) System
X-band ESR measurements on a single crystal of SrCu(BO) system in
a temperature range between 10 K and 580 K are presented. The temperature and
angular dependence of unusually broad ESR spectra can be explained by the
inclusion of antisymmetric Dzyaloshinsky-Moriya (DM) interaction, which yields
by far the largest contribution to the linewidth. However, the well-accepted
picture of only out-of-plane interdimer DM vectors is not sufficient for
explanation of the observed angular dependence. In order to account for the
experimental linewidth anisotropy we had to include sizable in-plane components
of interdimer as well as intradimer DM interaction in addition to the
out-of-plane interdimer one. The nearest-neighbor DM vectors lie perpendicular
to crystal anisotropy c-axis due to crystal symmetry. We also emphasize that
above the structural phase transition occurring at 395 K dynamical mechanism
should be present allowing for instantaneous DM interactions. Moreover, the
linewidth at an arbitrary temperature can be divided into two contributions;
namely, the first part arising from spin dynamics governed by the spin
Hamiltonian of the system and the second part due to significant spin-phonon
coupling. The nature of the latter mechanism is attributed to phonon-modulation
of the antisymmetric interaction, which is responsible for the observed linear
increase of the linewidth at high temperatures.Comment: 17 pages, 4 figures, submitted to PR
Design and Checkout of a High Speed Research Nozzle Evaluation Rig
The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals
Dopant-induced crossover from 1D to 3D charge transport in conjugated polymers
The interplay between inter- and intra-chain charge transport in bulk
polythiophene in the hopping regime has been clarified by studying the
conductivity as a function of frequency (up to 3 THz), temperature and doping
level. We present a model which quantitatively explains the observed crossover
from quasi-one-dimensional transport to three-dimensional hopping conduction
with increasing doping level. At high frequencies the conductivity is dominated
by charge transport on one-dimensional conducting chains.Comment: 4 pages, 2 figure
Modelling charge self-trapping in wide-gap dielectrics: Localization problem in local density functionals
We discuss the adiabatic self-trapping of small polarons within the density
functional theory (DFT). In particular, we carried out plane-wave
pseudo-potential calculations of the triplet exciton in NaCl and found no
energy minimum corresponding to the self-trapped exciton (STE) contrary to the
experimental evidence and previous calculations. To explore the origin of this
problem we modelled the self-trapped hole in NaCl using hybrid density
functionals and an embedded cluster method. Calculations show that the
stability of the self-trapped state of the hole drastically depends on the
amount of the exact exchange in the density functional: at less than 30% of the
Hartree-Fock exchange, only delocalized hole is stable, at 50% - both
delocalized and self-trapped states are stable, while further increase of exact
exchange results in only the self-trapped state being stable. We argue that the
main contributions to the self-trapping energy such as the kinetic energy of
the localizing charge, the chemical bond formation of the di-halogen quasi
molecule, and the lattice polarization, are represented incorrectly within the
Kohn-Sham (KS) based approaches.Comment: 6 figures, 1 tabl
- …
