2,834 research outputs found
Recommended from our members
Systematic Underestimation of Maximum Crest Heights in Deep Water Using Surface-Following Buoys
Evaluation of grapevine water status from trunk diameter variations
We evaluated the usefulness of short-term trunk diameter variations (TDV) as water stress indicator in field-grown grapevines cv. Tempranillo. Two indices were calculated from TDV, maximum daily trunk shrinkage (MDS), and trunk growth rate (TGR). The seasonal evolution of both indicators was compared with occasional determinations of pre-dawn leaf water potential and stem water potential, measured at early morning (Ψ s em ) and at midday (Ψ s md ) in irrigated and non-irrigated vines. In the second season, the effect of crop load on the vine water status indicators was also studied. Crop load did not affect either the vine water relations or the TDV. All water potential determinations had much lower variability and were more sensitive than both MDS and TGR to water restrictions. The ability of both indices to detect plant water stress varied largely depending upon the phenological period. In fact, MDS and TGR were only able to detect vine water stress during a short period of time before veraison. During this period, TGR was linearly related to both Ψ s em and Ψ s md , while for MDS a curvilinear, quadratic equation, better described the relationship with plant water status. After veraison no apparent relationship existed between plant water status and MDS or TGR. Hence, our results question the practical use of both MDS and TGR as variables to automate irrigation scheduling for grapevin
Frequency and power dependence of spin-current emission by spin pumping in a thin film YIG/Pt system
This paper presents the frequency dependence of the spin current emission in
a hybrid ferrimagnetic insulator/normal metal system. The system is based on a
ferrimagnetic insulating thin film of Yttrium Iron Garnet (YIG, 200 nm) grown
by liquid-phase-epitaxy (LPE) coupled with a normal metal with a strong
spin-orbit coupling (Pt, 15 nm). The YIG layer presents an isotropic behaviour
of the magnetization in the plane, a small linewidth, and a roughness lower
than 0.4 nm. Here we discuss how the voltage signal from the spin current
detector depends on the frequency [0.6 - 7 GHz], the microwave power, Pin, [1 -
70 mW], and the in-plane static magnetic field. A strong enhancement of the
spin current emission is observed at low frequencies, showing the appearance of
non-linear phenomena.Comment: 7 pages, 5 figure
Recommended from our members
Memory for allergies and health foods: how younger and older adults strategically remember critical health information
Objectives. While older adults often display memory deficits, with practice they can sometimes selectively remember valuable information at the expense of less value information. We examined age-related differences and similarities in memory for health-related information under conditions where some information was critical to remember.
Method. In Experiment 1, participants studied three lists of allergens, ranging in severity from 0 (not a health risk) to 10 (potentially fatal), with the instruction that it was particularly important to remember items to which a fictional relative was most severely allergic. After each list, participants received feedback regarding their recall of the high-value allergens. Experiment 2 examined memory for health benefits, presenting foods that were potentially beneficial to the relative’s immune system.
Results. While younger adults exhibited better overall memory for the allergens, both age groups in Experiment 1 developed improved selectivity across the lists, with no evident age differences in severe allergen recall by List 2. Selectivity also developed in Experiment 2, although age differences for items of high health benefit were present.
Discussion. The results have implications for models of selective memory in older age, and for how aging influences the ability to strategically remember important information within health-related contexts
Free recall test experience potentiates strategy-driven effects of value on memory.
People tend to show better memory for information that is deemed valuable or important. By one mechanism, individuals selectively engage deeper, semantic encoding strategies for high value items (Cohen, Rissman, Suthana, Castel, & Knowlton, 2014). By another mechanism, information paired with value or reward is automatically strengthened in memory via dopaminergic projections from midbrain to hippocampus (Shohamy & Adcock, 2010). We hypothesized that the latter mechanism would primarily enhance recollection-based memory, while the former mechanism would strengthen both recollection and familiarity. We also hypothesized that providing interspersed tests during study is a key to encouraging selective engagement of strategies. To test these hypotheses, we presented participants with sets of words, and each word was associated with a high or low point value. In some experiments, free recall tests were given after each list. In all experiments, a recognition test was administered 5 minutes after the final word list. Process dissociation was accomplished via remember/know judgments at recognition, a recall test probing both item memory and memory for a contextual detail (word plurality), and a task dissociation combining a recognition test for plurality (intended to probe recollection) with a speeded item recognition test (to probe familiarity). When recall tests were administered after study lists, high value strengthened both recollection and familiarity. When memory was not tested after each study list, but rather only at the end, value increased recollection but not familiarity. These dual process dissociations suggest that interspersed recall tests guide learners' use of metacognitive control to selectively apply effective encoding strategies. (PsycINFO Database Recor
Recommended from our members
Mastery-approach goals eliminate retrieval-induced forgetting: the role of achievement goals in memory inhibition
The present study examined how achievement goals affect retrieval-induced forgetting. Researchers have suggested that mastery-approach goals (i.e., developing one’s own competence) promote a relational encoding, whereas performance-approach goals (i.e., demonstrating one’s ability in comparison to others) promote item-specific encoding. These different encoding processes may affect the degree to which participants integrate the exemplars within a category and, as a result, we expected that retrieval-induced forgetting may be reduced or eliminated under mastery-approach goals. Three experiments were conducted using a retrieval-practice paradigm with different stimuli, where participants’ achievement goals were manipulated through brief written instructions. A meta-analysis that synthesized the results of the three experiments showed that retrieval-induced forgetting was not statistically significant in the mastery-approach goal condition, whereas it was statistically significant in the performance-approach goal condition. These results suggest that mastery-approach goals eliminate retrieval-induced forgetting, but performance-approach goals do not, demonstrating that motivation factors can influence inhibition and forgetting
Recommended from our members
When enough is not enough: information overload and metacognitive decisions to stop studying information
People are often exposed to more information than they can actually remember. Despite this frequent form of information overload, little is known about how much information people choose to remember. Using a novel “stop” paradigm, the current research examined whether and how people choose to stop receiving new—possibly overwhelming—information with the intent to maximize memory performance. Participants were presented with a long list of items and were rewarded for the number of correctly remembered words in a following free recall test. Critically, participants in a stop condition were provided with the option to stop the presentation of the remaining words at any time during the list, whereas participants in a control condition were presented with all items. Across five experiments, we found that participants tended to stop the presentation of the items to maximize the number of recalled items, but this decision ironically led to decreased memory performance relative to the control group. This pattern was consistent even after controlling for possible confounding factors (e.g., task demands). The results indicated a general, false belief that we can remember a larger number of items if we restrict the quantity of learning materials. These findings suggest people have an incomplete understanding of how we remember excessive amounts of information
High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes
We present the results of high precision measurements of the thermal
expansion of the sintered SiC, SiC-100, intended for use in cryogenic
space-telescopes, in which minimization of thermal deformation of the mirror is
critical and precise information of the thermal expansion is needed for the
telescope design. The temperature range of the measurements extends from room
temperature down to 10 K. Three samples, #1, #2, and #3 were
manufactured from blocks of SiC produced in different lots. The thermal
expansion of the samples was measured with a cryogenic dilatometer, consisting
of a laser interferometer, a cryostat, and a mechanical cooler. The typical
thermal expansion curve is presented using the 8th order polynomial of the
temperature. For the three samples, the coefficients of thermal expansion
(CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were
derived for temperatures between 293 K and 10 K. The average and the dispersion
(1 rms) of these three CTEs are 0.816 and 0.002 (/K),
respectively. No significant difference was detected in the CTE of the three
samples from the different lots. Neither inhomogeneity nor anisotropy of the
CTE was observed. Based on the obtained CTE dispersion, we performed an
finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m
diameter cryogenic mirror made of six SiC-100 segments. It was shown that the
present CTE measurement has a sufficient accuracy well enough for the design of
the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope
for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure
- …
