19,599 research outputs found

    On sparsity averaging

    Get PDF
    Recent developments in Carrillo et al. (2012) and Carrillo et al. (2013) introduced a novel regularization method for compressive imaging in the context of compressed sensing with coherent redundant dictionaries. The approach relies on the observation that natural images exhibit strong average sparsity over multiple coherent frames. The associated reconstruction algorithm, based on an analysis prior and a reweighted 1\ell_1 scheme, is dubbed Sparsity Averaging Reweighted Analysis (SARA). We review these advances and extend associated simulations establishing the superiority of SARA to regularization methods based on sparsity in a single frame, for a generic spread spectrum acquisition and for a Fourier acquisition of particular interest in radio astronomy.Comment: 4 pages, 3 figures, Proceedings of 10th International Conference on Sampling Theory and Applications (SampTA), Code available at https://github.com/basp-group/sopt, Full journal letter available at http://arxiv.org/abs/arXiv:1208.233

    PURIFY: a new approach to radio-interferometric imaging

    Get PDF
    In a recent article series, the authors have promoted convex optimization algorithms for radio-interferometric imaging in the framework of compressed sensing, which leverages sparsity regularization priors for the associated inverse problem and defines a minimization problem for image reconstruction. This approach was shown, in theory and through simulations in a simple discrete visibility setting, to have the potential to outperform significantly CLEAN and its evolutions. In this work, we leverage the versatility of convex optimization in solving minimization problems to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure promoted relies on the simultaneous-direction method of multipliers (SDMM), and contrasts with the current major-minor cycle structure of CLEAN and its evolutions, which in particular cannot handle the state-of-the-art minimization problems under consideration where neither the regularization term nor the data term are differentiable functions. We release a beta version of an SDMM-based imaging software written in C and dubbed PURIFY (http://basp-group.github.io/purify/) that handles various sparsity priors, including our recent average sparsity approach SARA. We evaluate the performance of different priors through simulations in the continuous visibility setting, confirming the superiority of SARA

    No Trade

    Get PDF

    Uniform convergence to equilibrium for granular media

    Get PDF
    We study the long time asymptotics of a nonlinear, nonlocal equation used in the modelling of granular media. We prove a uniform exponential convergence to equilibrium for degenerately convex and non convex interaction or confinement potentials, improving in particular results by J. A. Carrillo, R. J. McCann and C. Villani. The method is based on studying the dissipation of the Wasserstein distance between a solution and the steady state

    Nonlocal interactions by repulsive-attractive potentials: radial ins/stability

    Full text link
    In this paper, we investigate nonlocal interaction equations with repulsive-attractive radial potentials. Such equations describe the evolution of a continuum density of particles in which they repulse each other in the short range and attract each other in the long range. We prove that under some conditions on the potential, radially symmetric solutions converge exponentially fast in some transport distance toward a spherical shell stationary state. Otherwise we prove that it is not possible for a radially symmetric solution to converge weakly toward the spherical shell stationary state. We also investigate under which condition it is possible for a non-radially symmetric solution to converge toward a singular stationary state supported on a general hypersurface. Finally we provide a detailed analysis of the specific case of the repulsive-attractive power law potential as well as numerical results. We point out the the conditions of radial ins/stability are sharp.Comment: 42 pages, 7 figure

    A randomised primal-dual algorithm for distributed radio-interferometric imaging

    Get PDF
    Next generation radio telescopes, like the Square Kilometre Array, will acquire an unprecedented amount of data for radio astronomy. The development of fast, parallelisable or distributed algorithms for handling such large-scale data sets is of prime importance. Motivated by this, we investigate herein a convex optimisation algorithmic structure, based on primal-dual forward-backward iterations, for solving the radio interferometric imaging problem. It can encompass any convex prior of interest. It allows for the distributed processing of the measured data and introduces further flexibility by employing a probabilistic approach for the selection of the data blocks used at a given iteration. We study the reconstruction performance with respect to the data distribution and we propose the use of nonuniform probabilities for the randomised updates. Our simulations show the feasibility of the randomisation given a limited computing infrastructure as well as important computational advantages when compared to state-of-the-art algorithmic structures.Comment: 5 pages, 3 figures, Proceedings of the European Signal Processing Conference (EUSIPCO) 2016, Related journal publication available at https://arxiv.org/abs/1601.0402
    corecore