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ABSTRACT
In a recent article series, the authors have promoted convexoptimization algorithms for
radio-interferometric imaging in the framework of compressed sensing, which leverages
sparsity regularization priors for the associated inverseproblem and defines a minimiza-
tion problem for image reconstruction. This approach was shown, in theory and through
simulations in a simple discrete visibility setting, to have the potential to outperform sig-
nificantly CLEAN and its evolutions. In this work, we leverage the versatility of convex
optimization in solving minimization problems to both handle realistic continuous visibil-
ities and offer a highly parallelizable structure paving the way to significant acceleration
of the reconstruction and high-dimensional data scalability. The new algorithmic structure
promoted relies on the simultaneous-direction method of multipliers (SDMM), and contrasts
with the current major-minor cycle structure of CLEAN and its evolutions, which in par-
ticular cannot handle the state-of-the-art minimization problems under consideration where
neither the regularization term nor the data term are differentiable functions. We release
a beta version of an SDMM-based imaging software written in Cand dubbed PURIFY
(http://basp-group.github.io/purify/) that handles various sparsity priors, in-
cluding our recent average sparsity approach SARA. We evaluate the performance of different
priors through simulations in the continuous visibility setting, confirming the superiority of
SARA.

Key words: techniques: image processing – techniques: interferometric.

1 INTRODUCTION

Radio interferometry is a powerful technique that allows observa-
tion of the radio emission from the sky with high angular resolution
and sensitivity, providing valuable information for astrophysics, as-
trometry and cosmology (Ryle & Vonberg 1946; Blythe 1957; Ryle
et al. 1959; Ryle & Hewish 1960; Thompson et al. 2001). The mea-
surement equation for radio interferometry defines an ill-posed lin-
ear inverse problem in the perspective of signal reconstruction. Un-
der restrictive assumptions of monochromatic non-polarized imag-
ing on small fields of view (FOV), the measured visibilities relates
to Fourier measurements of the observed signal. Next-generation
radio telescopes, such as the new LOw Frequency ARray (LO-
FAR1), or the recently upgraded Karl G. Jansky Very Large Ar-
ray (VLA2), or the future Square Kilometer Array (SKA3), will

⋆ E-mail: rafael.carrillo@epfl.ch
1 http://www.lofar.org/
2 https://science.nrao.edu/facilities/vla
3 http://www.skatelescope.org/

achieve much higher dynamic range than current instruments, also
at higher angular resolution. Also, these telescopes will acquire a
massive amount of data, thus posing large-scale problems. Classi-
cal imaging techniques developed in the field, such as the CLEAN
algorithm and its multi-scale variants (Högbom 1974; Bhatnagar
& Cornwell 2004; Cornwell 2008), are known to be slow and to
provide suboptimal imaging quality (Li et al. 2011; Carrillo et al.
2012). This state of things has triggered an intense research to re-
formulate imaging techniques for radio interferometry in the per-
spective of next-generation instruments.

The theory of compressed sensing (CS) introduces a signal
acquisition and reconstruction framework that goes beyondthe tra-
ditional Nyquist sampling paradigm (Donoho 2006; Candès 2006;
Baraniuk 2007; Fornasier & Rauhut 2011). Recently, CS and con-
vex optimization techniques have been applied to image deconvo-
lution in radio interferometry (Wiaux et al. 2009a,b; Wenger et al.
2010; McEwen & Wiaux 2011; Li et al. 2011; Carrillo et al. 2012)
showing promising results. These techniques promise improved
image fidelity, flexibility and computation speed over traditional
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approaches. This speed enhancement is crucial for the scalability
of imaging techniques to very high dimensions in the perspective
of next-generation telescopes. However, CS-based imagingtech-
niques have only been studied for low dimensional discrete visibil-
ity coverages. The works inWiaux et al.(2009a,b) andMcEwen
& Wiaux (2011) consider idealised random and discrete visibility
coverages in order to remain as close to the CS theory as possible.
First steps towards more realistic visibility coverages have been
taken byWenger et al.(2010) andLi et al. (2011), who consider
coverages due to specific interferometer configurations butwhich
remain discrete.Carrillo et al. (2012) consider variable density
sampling patterns, which mimic common generic sampling pat-
terns in radio-interferometric (RI) imaging but also remaining dis-
crete. These preliminary works suggest that the performance of CS
reconstructions is likely to hold for more realistic visibility cover-
ages. Therefore, the extension of CS techniques to more realistic
continuous interferometric measurements is of great importance.

In the present work, we extend the previously proposed imag-
ing approaches inWiaux et al. (2009a), Wiaux et al. (2009b)
and Carrillo et al. (2012) to handle continuous visibilities and
open the door to large-scale optimization problems. We pro-
pose a general algorithmic framework based on the simultaneous-
direction method of multipliers (SDMM) to solve sparse imaging
problems. The proposed framework offers a parallel implemen-
tation structure that decomposes the original problem intoseveral
small simple problems, hence allowing implementation in mul-
ticore architectures or in computer clusters, or on graphics pro-
cessing units. These implementations provide both flexibility in
memory requirements and a significant gain in terms of speed,
thus enabling scalability to large-scale problems. SDMM stands
in stark contrast with the current major-minor cycle structure of
CLEAN and evolutions, which in particular cannot handle the
state-of-the-art minimization problems under consideration (Car-
rillo et al. 2012), where neither the regularization term nor the data
term are differentiable functions. We release a beta version of an
SDMM-based imaging software written in C and dubbed PURIFY
(http://basp-group.github.io/purify/) that handles
various sparsity priors, including our recent average sparsity ap-
proach SARA (Carrillo et al. 2012), thus providing a new powerful
framework for RI imaging. We evaluate the performance of differ-
ent priors through simulations in the continuous visibility setting.
Simulation results confirm the superiority of SARA for continuous
Fourier measurements. Even though this beta version of PURIFY
is not parallelized, we discuss in detail the extraordinaryparallel
and distributed optimization potential of SDMM, to be exploited in
future versions.

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the theory of CS briefly. In Section3, we recall
the inverse problem for image reconstruction from RI data and de-
scribe the state-of-the-art image reconstruction techniques used in
radio astronomy. Section4 presents the SDMM-based algorithm
for RI imaging, which enables the incorporation of any convex
sparsity regularization prior. In Section5 we describe the PURIFY
package, including implementation details. Numerical results eval-
uating the different regularization priors included in PURIFY, in
particular SARA, are presented in Section6. Finally we conclude
in Section7.

2 COMPRESSED SENSING

CS introduces a signal acquisition framework that goes beyond
the traditional Nyquist sampling paradigm (Donoho 2006; Candès
2006; Baraniuk 2007; Fornasier & Rauhut 2011), demonstrating
that sparse signals may be recovered accurately from incomplete
data. Consider a complex-valued signalx ∈ C

N , assumed to
be sparse in some orthonormal basisΨ ∈ C

N×N with K ≪ N
nonzero coefficients, and also consider the measurement model
y = Φx + n, wherey ∈ C

M denotes the measurement vector,
Φ ∈ C

M×N is the sensing matrix andn ∈ C
M represents the ob-

servation noise. The standard conditionM < N characterizes the
incompleteness of the data. The most common approach to recover
x from y is to solve the following convex problem (Fornasier &
Rauhut 2011):

min
ᾱ∈CN

‖ᾱ‖1 subject to‖y − ΦΨᾱ‖2 6 ǫ, (1)

whereǫ is an upper bound on theℓ2 norm of the noise and‖ · ‖1
denotes theℓ1 norm of a complex-valued vector. The signal is re-
covered aŝx = Ψα̂, whereα̂ denotes the solution to the above
problem. Such problems that solve for the representation ofthe
signal in a sparsity basis are known as synthesis-based problems.

The standard theory of CS provides results for the recovery
of x from y if Φ obeys a Restricted Isometry Property (RIP) (For-
nasier & Rauhut 2011). A sufficient condition is thatM is larger
than roughly the signal sparsity:M > 2K ≪ N . Note that in-
complete Fourier measurements, on discrete or continuous spatial
frequencies, represent a good sampling approach in this context.
In the continuous setting, the theory applies also forM > N .
It is not strictly “compressed” sensing any more but the inverse
problem remains ill-posed. The basic theory also requiresΨ to be
orthonormal. However, signals often exhibit better sparsity in an
overcomplete dictionary (Gribonval & Nielsen 2003; Bobin et al.
2007; Starck et al. 2010). Therefore recent works have begun to
address the case of CS with redundant dictionaries. In this setting
the signalx is expressed in terms of a dictionaryΨ ∈ C

N×D ,
N < D, asx = Ψα, α ∈ C

D . Rauhut et al.(2008) find condi-
tions on the dictionaryΨ such that the compound matrixΦΨ obeys
the RIP to accurately recoverα by solving a synthesis-based prob-
lem. Note that the problem is now more severely undertermined
since the dimensionality of the unknonw has increased fromN to
D.

As opposed to synthesis-based problems, analysis-based prob-
lems recover the signal itself solving:

min
x̄∈CN

‖Ψ†
x̄‖1 subject to‖y − Φx̄‖2 6 ǫ, (2)

whereΨ† denotes the adjoint operator ofΨ. In this paper the super-
script † is used to denote both operator adjoint or conjugate trans-
pose.Candès et al.(2010) provide a theoretical analysis of theℓ1
analysis-based problem, extending the standard CS theory to coher-
ent and redundant dictionaries. They provide theoretical stability
guarantees based on a general condition of the sensing matrix Φ,
coined the Dictionary Restricted Isometry Property (D-RIP). Note
that in the case when redundant dictionaries are used, the analysis
problem does not increase the dimensionality of the problemas it
solves for the signal itself. Empirical and theoretical studies have
shown clear advantages of the analysis approach over the synthe-
sis approach for imaging problems (Carrillo et al. 2013). SeeNam
et al. (2013) and references therein for further discussion of the
analysis model.
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3 RADIO-INTERFEROMETRIC IMAGING

3.1 Interferometric inverse problem

A radio interferometer is an array of spatially separated antennas
that takes measurements of the radio emissions of the sky, the so-
called visibilities. The visibility coordinates are givenby the rel-
ative position between each pair of antennas. The baseline com-
ponents(u, v, w) are measured in units of the wavelengthλ of the
incoming signal. The componentsu = (u, v) specify the planar
baseline coordinates, while the third componentw is associated
with the basis vector of the coordinate pointing towards thecenter
of the FOV of the telescope. The sky brightness distributionx can
be described in the same coordinate system as the baseline, with
components(l,m, n) wherel = (l,m) denotes the coordinates
on the image plane andn(l) =

√
1− l2 −m2. The general RI

equation for monochromatic non-polarized imaging reads as:

y (u) =

∫

A (l,u)x (l) e−2πiu·l d2
l, (3)

whereA (l,u) = A′ (l,u)n−1(l) andA′ (l,u) stands for all con-
tributions of direction dependent effects (DDE). Examplesof DDEs
are the primary beam, which limits the observed FOV, and thew-
terme−2πiw(n(l)−1). This general equation defines a linear inverse
problem in the perspective of recovering the intensity signalx from
the measured visibilities (Rau et al. 2009). Under the assumptions
of small FOV (n ≈ 1) or when the array is coplanar (w ≈ 0), each
visibility corresponds to the measurement of the Fourier transform
of a planar signal at the spatial frequencyu. This result is known
as the van Cittert-Zernike theorem (Thompson et al. 2001). The
total number of pointsu probed by all telescope pairs of the array
during the observation provides some incomplete coverage in the
Fourier plane, the so-calledu-v coverage, characterizing the inter-
ferometer.

To recover the source image from incomplete visibility mea-
surements, we pose the inverse problem (3) for a sampled version of
the image. The band-limited functions considered are completely
identified by their Nyquist-Shannon sampling on a discrete uniform
grid ofN = N1/2×N1/2 points in real space. The sampled inten-
sity signal is denoted by the vectorx ∈ R

N . We takeM visibilities
denoted by the vectory ∈ C

M , which are related to the discrete
image by the following linear model:

y = Φx +n, (4)

whereΦ ∈ C
M×N represents the general linear map from the im-

age space domain to the visibility domain, which defines an ill-
posed inverse problem in the perspective of image reconstruction.
In the particular case when the visibilities identify with Fourier
samples the measurement essentially reduces to a Fourier matrix
sampled onM spatial frequencies (see eq. (31) in Section5). In
a realistic continuous visibility setting, one usually hasM > N
and sometimesM ≫ N , which will be increasingly the case for
next-generation telescopes.

3.2 State-of-the-art of classic imaging algorithms

The most standard image reconstruction algorithm from visibility
measurements is called CLEAN, which is a non-linear deconvolu-
tion method based on local iterative beam removal (Högbom 1974;
Schwarz 1978; Thompson et al. 2001). A sparsity prior on the orig-
inal signal in real space is implicitly introduced thus already taking
advantage of CS theory guarantees. Furthermore, as discussed in
Cornwell (2008) andWiaux et al.(2009a) the CLEAN algorithm

and its variants are examples of the Matching Pursuit algorithm
(Mallat & Zhang 1993), which is well known in the CS commu-
nity. CLEAN can be considered as a steepest descend algorithm to
minimize the objective functionχ2 = ‖y − Φx‖22 subject to an
image model regularization (Rau et al. 2009). Most variants oper-
ate iteratively in two steps called the major and minor cycles. The
major cycle computes the residual imager(t) = Φ†(y − Φx(t)),
which is the gradient of theχ2 objective function at iterationt. The
minor cycle regularizes the image update by applying an operator
T, which represents a deconvolution of the operatorΦ, to the resid-
ual image yielding updates of the form

x
(t+1) = x

(t) + T(r(t)). (5)

A multi-scale version of CLEAN, MS-CLEAN, has also been
developed (Cornwell 2008), where the sparsity model is improved
by multi-scale decomposition, hence enabling better recovery of
the signal. The MS-CLEAN method was shown to perform better
than the standard CLEAN, but still suffers from an empiricalchoice
of basis profiles and scales. An adaptive scale pixel decomposi-
tion method called ASP-CLEAN was also introduced to improve
on multi-scale CLEAN by relying on an adaptive choice of scales
(Bhatnagar & Cornwell 2004). ASP-CLEAN models an image as
a superposition of atoms in a redundant dictionary parametrized by
amplitude, location and scale. Thus, this algorithm can be seen
as a Matching Pursuit algorithm with an overcomplete dictionary.
Note that these approaches are known to be slow, sometimes pro-
hibitively so. Variants of CLEAN that addresses wide-band effects,
or atmospheric effects have also been proposed in the literature (see
Rau et al.(2009), Bhatnagar et al.(2008a), Bhatnagar et al.(2013)
and references therein).

Another approach to the reconstruction of images from visi-
bility measurements is the Maximum Entropy Method (MEM). In
contrast to CLEAN, MEM solves a global optimization problemin
which the inverse problem is regularized by the introduction of an
entropic prior on the signal, but sparsity is not explicitlyrequired
(Cornwell & Evans 1985). In practice, CLEAN and variants have
found more widespread application than MEM.

3.3 State-of-the-art of convex imaging algorithms

Reconstruction techniques based on CS and convex optimization
have also been proposed. The relationship between CLEAN and
ℓ1 minimization coupled with a Dirac basis was first studied by
Marsh & Richardson(1987). The first application of CS and con-
vex optimization to radio interferometry was performed byWiaux
et al. (2009a), where the versatility of the approach and its supe-
riority relative to standard interferometric imaging techniques was
demonstrated. It was reported that anℓ1 minimization problem of
the form of (1) coupled with a Dirac basis yields similar reconstruc-
tion quality to CLEAN, while including a positivity constraint in a
convex formulation significantly enhances the reconstruction qual-
ity relative to CLEAN. The spread spectrum phenomenon associ-
ated with thew component on wide FOV observations was shown
in Wiaux et al.(2009b) to underpin a significant enhancement of the
imaging quality independently of the sparsity basis chosen. These
considerations pave the way to potential optimization strategies at
the acquisition level in terms of antenna distribution design. A CS
approach was developed and evaluated byWiaux et al.(2010) to re-
cover the signal induced by cosmic strings in the cosmic microwave
background.McEwen & Wiaux(2011) generalise the previous CS
imaging techniques to a wide FOV, recovering interferometric im-
ages defined directly on the sphere, rather than a tangent plane. All
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of these works consider uniformly random and discrete visibility
coverage in order to remain as close to the CS theory as possible.
Wiaux et al.(2010) andMcEwen & Wiaux(2011) exploited the fact
that many signals in nature are also sparse or compressible in the
magnitude of their gradient space, in which case the total variation
(TV) minimization problem,

min
x̄∈CN

‖x̄‖TV subject to‖y − Φx̄‖2 6 ǫ, (6)

has been shown to yield superior reconstruction results. The TV
norm is defined as‖x̄‖TV = ‖∇x̄‖1, where∇x̄ denotes the image
gradient magnitude (Rudin et al. 1992).

First steps towards more realistic visibility coverages have
been taken bySuksmono(2009) and Wenger et al.(2010), who
consider coverages due to specific interferometer configurations but
which remain discrete. The aforementioned works use the follow-
ing unconstrained synthesis problem:

min
ᾱ∈CN

1

2
‖y − ΦΨᾱ‖22 + λ‖ᾱ‖1, (7)

whereλ is a regularization parameter that balances the weight be-
tween the fidelity term and the regularization term.Wenger et al.
(2010) reports superior reconstruction quality relative to an auto-
matic CLEAN reconstruction and similar results relative toa user-
guided CLEAN reconstruction.Li et al. (2011) studied a CS imag-
ing approach based on (7) and the isotropic undecimated wavelet
transform, reporting results from discrete simulated coverages of
ASKAP. The reconstruction quality of the isotropic undecimated
wavelet transform method was reported to be superior to those of
CLEAN and MS-CLEAN. Minimization of the problem (7) is done
iteratively by a projected gradient algorithm with updatesof the
form:

α
(t+1) = Sλ

(

α
(t) + µΨ†

Φ
†(y − ΦΨα

(t))
)

, (8)

whereSλ(·) is the soft-thresholding operator, which will be defined
in Section4.4. This algorithm can be seen as a major-minor cycle
update where the major cycle computes the gradient of theχ2 data
fidelity term and the minor cycle regularizes the solution byapply-
ing the soft-thresholding operator.

Carrillo et al.(2012) proposed an imaging algorithm dubbed
sparsity averaging reweighted analysis (SARA) based on aver-
age sparsity over multiple bases, showing superior reconstruction
qualities relative to state-of-the-art imaging methods inthe field.
A sparsity dictionary composed of a concatenation ofq bases,
Ψ = [Ψ1,Ψ2, . . . ,Ψq], with Ψ ∈ C

N×D , N < D, is used and
average sparsity is promoted through the minimization of ananaly-
sisℓ0 prior, ‖Ψ†x̄‖0. The concatenation of the Dirac basis and the
first eight orthonormal Daubechies wavelet bases (Db1-Db8)was
proposed as an effective and simple candidate for a dictionary in
the RI imaging context. SeeCarrillo et al.(2013) for further dis-
cussions on the average sparsity model, the dictionary selection and
other applications to compressive imaging.

SARA adopts a reweightedℓ1 minimization scheme to pro-
mote average sparsity through the prior‖Ψ†x̄‖0. The algorithm
replaces theℓ0 norm by a weightedℓ1 norm and solves a sequence
of weightedℓ1 problems where the weights are essentially the in-
verse of the values of the solution of the previous problem (Candès
et al. 2008). The weightedℓ1 problem is defined as:

min
x̄∈RN

+

‖WΨ
†
x̄‖1 subject to‖y − Φx̄‖2 6 ǫ, (9)

whereW ∈ R
D×D denotes the diagonal matrix with positive

weights andRN
+ denotes the positive orthant inRN , which rep-

resents the positivity prior onx. Note that problems of the form
(6) and (9) involve the minimization of a constrained problem with
non-differentiable functions, which rules out smooth optimization
techniques and do not fit in the major-minor cycle structure of
CLEAN and the projected gradient algorithm. Therefore one must
resort to more sophisticated optimization techniques to solve these
non-smooth problems.

4 A LARGE-SCALE OPTIMIZATION ALGORITHM

4.1 Proximal splitting methods

Convex optimization problems have many attractive properties, in
particular the essential property that any local minimum must be
a global minimum and thus there exist efficient methods to solve
them. Among convex optimization methods, proximal splitting
methods offer great flexibility and are shown to capture and ex-
tend several well-known algorithms in a unifying framework. Ex-
amples of proximal splitting algorithms include Douglas-Rachford,
iterative thresholding, projected Landweber, projected gradient,
forward-backward, alternating projections, alternatingdirection
method of multipliers and alternating split Bregman (Combettes
& Pesquet 2011). Proximal splitting methods solve optimization
problems of the form

min
x∈RN

f1(x) + . . .+ fS(x), (10)

wheref1(x), . . . , fS(x) are convex lower semicontinuous func-
tions fromR

N to R, not necessarily differentiable. Note that any
convex constrained problem can be formulated as an unconstrained
problem by using the indicator function of the convex constraint
set as one of the functions in (10), i.e. fk(x) = iC(x) whereC
represents the convex constraint set. The indicator function, de-
fined asiC(x) = 0 if x ∈ C or iC(x) = +∞ otherwise, belongs
to the class of convex lower semicontinuous functions. Also, note
that complex-valued vectors are treated as real-valued vectors with
twice the dimension (accounting for real and imaginary parts).

Proximal splitting methods proceed by splitting the contribu-
tion of the functionsf1(x), . . . , fS(x) individually so as to yield
an easily implementable algorithm. They are called proximal be-
cause each non-smooth function in (10) is incorporated in the min-
imization via its proximity operator. The proximity operator is an
extension of the notion of the set projection operator to more gen-
eral functions. Letf be a convex lower semicontinuous function
from R

N toR, then the proximity operator off is defined as:

proxf (x) , arg min
z∈RN

f(z) +
1

2
‖x − z‖22. (11)

Typically, the solution to (10) is reached iteratively by successive
application of the proximity operator associated with eachfunction.
An important feature of proximal splitting methods is that they of-
fer a powerful framework for solving convex problems in terms of
speed and scalability of the techniques to very high dimensions.
SeeCombettes & Pesquet(2011) for a review of proximal splitting
methods and their applications in signal and image processing.

4.2 Shortcomings of previously used algorithms

The works inWiaux et al.(2009b), McEwen & Wiaux(2011) and
Carrillo et al.(2012) solved problems of the form in (9), whereas
Wenger et al.(2010) andLi et al. (2011) solved the unconstrained
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problem (7). Unconstrained problems are easier to handle and there
exist fast algorithms to solve them, such as the FISTA algorithm
(Beck & Teboulle 2009b). However, there is no optimal strategy
to fix the regularization parameter even if the noise level isknown,
therefore constrained problems, such as (9), offer a stronger fidelity
term when the noise power is known, or can be estimateda priori.
Hence, we focus our attention on solving problem (9) efficiently.
Wiaux et al.(2009b), McEwen & Wiaux(2011) andCarrillo et al.
(2012) used a Douglas-Rachford splitting algorithm (Combettes &
Pesquet 2007) to solve (9) in a simple discrete setting. However, in
a realistic continuous setting this algorithm presents several short-
comings. In the following we discuss the main limitations ofthe
Douglas-Rachford algorithm.

The Douglas-Rachford splitting algorithm solves the problem
by iteratively minimizing theℓ1 norm and then projecting the result
onto the constraint setC′ = {x ∈ C

N : ‖y − Φx‖2 6 ǫ} ∩ R
N
+

until some stopping criteria is achieved. The projection onto the
setC′ is a hard optimization problem which in itself requires an
iterative algorithm such as the generalized forward-backward al-
gorithm. This iterative algorithm requires knowledge of the exact
operator norm (maximum singular value) ofΦ or at least a closed
upper bound to guarantee convergence. In the discrete case the ex-
act operator norm can be computed and the algorithm achievesa
fast convergence rate. However, in the continuous case the oper-
ator norm is unknown and its estimation poses a new problem. If
the estimate of the operator norm is not precise enough, the algo-
rithm takes many sub-iterations to converge. Hence, it would be
advantageous to have an algorithm that does not need prior knowl-
edge of the operator norm to achieve a fast convergence rate.An-
other tenet of the Douglas-Rachford algorithm is that it does not
offer a parallel structure, which is a desirable property when solv-
ing large scale-problems such as those envisaged for the upcoming
telescopes. For these reasons, we propose to use the simultaneous-
direction method of multipliers (SDMM) (Combettes & Pesquet
2011) which is also tailored to solve problems of the form of
(10) and circumvents the shortcomings of a Douglas-Rachford ap-
proach.

4.3 Simultaneous Direction Method of Multipliers (SDMM)

SDMM has two important properties: (i) it does not require dif-
ferentiability of any of the functions, and (ii) it offers a parallel
implementation structure where all the proximity operators can be
computed in parallel rather than sequentially (Combettes & Pes-
quet 2011). Such a parallel structure is useful when implementing
the algorithms on multicore architectures or on graphics process-
ing units, thus providing a significant gain in terms of speedand
scalability to large-scale problems. SDMM is a generalization of
the alternating-direction method of multipliers (Boyd et al. 2010)
to a sum of more than two functions. As such, SDMM uses aug-
mented Lagrangian techniques and duality arguments in its deriva-
tion. In the following we highlight the main steps in the derivation
of SDMM tailored to solve (9).

First, observe that the problem in (9) can be reformulated as
in (10) in the following way:

min
x∈CN

f1(L1x) + f2(L2x) + f3(L3x), (12)

where L1 = Ψ
† ∈ C

D×N , L2 = Φ ∈ C
M×N and L3 =

I ∈ R
N×N is the identity matrix. In this formulation,f1(r1) =

‖Wr1‖1 for r1 ∈ C
D , f2(r2) = iB(r2) with B = {r2 ∈ C

M :
‖y − r2‖2 6 ǫ}, andf3(r3) = iC(r3) with C = R

N
+ . This

problem is also equivalent to solving

min
x∈C

N ,r1∈C
D ,

r2∈C
M ,r3∈C

N

f1(r1) + f2(r2) + f3(r3) (13)

subject toLix = ri, for i = 1, 2, 3.

The augmented Lagrangian associated with (13) is the saddle func-
tion

Lγ(x,r1, r2, r3,z1,z2,z3) = (14)
3

∑

i=1

fi(ri) +
1

γ
z
†
i (Lix− ri) +

1

2γ
‖Lix− ri‖22,

whereγ > 0 is a so-called penalty parameter andz1 ∈ C
D ,

z2 ∈ C
M andz3 ∈ C

N are the dual variables or the Langrange
multipliers. SDMM is a primal dual algorithm that proceeds itera-
tively by first minimizingLγ with respect to the primal variables,
x, r1, r2, r3, and as second step, solving the dual problem

max
z1∈CD,z2∈CM ,z3∈CN

J (z1,z2,z3), (15)

where

J (z1,z2,z3) = min
x∈C

N ,r1∈C
D ,

r2∈C
M ,r3∈C

N

Lγ(x,r1, r2, r3,z1,z2,z3)

(16)
is the dual function. The main difference between SDMM and
other primal-dual algorithms is that the optimization withrespect
to the primal variables is done in an alternating fashion by first
minimizingLγ with respect tox and then with respect tor1, r2,
r3. The algorithm is shown to converge to a minimizer of (13).
Convergence results of SDMM are based on convergence of the
alternating-direction method of multipliers and can be found in
Boyd et al.(2010).

The minimizer ofLγ with respect tox with fixed variablesri,
zi is given by

x
∗ = arg min

x∈CN

3
∑

i=1

z
†
i (Lix− ri) +

1

2
‖Lix− ri‖22. (17)

Observe that the above problem is the minimization of a quadratic
function, which is convex and differentiable. Therefore, necessary
and sufficient optimality conditions are

∇xLγ(x
∗) =

3
∑

i=1

[

L
†
izi + L

†
i (Lix

∗ − ri)
]

= 0 (18)

and the matrixQ =
∑3

i=1 L
†
iLi ∈ C

N×N should be invertible. For
our particular problemQ = Φ

†
Φ + ΨΨ

† + I , which is positive-
definite and invertible. Solving (18) for x∗ yields

x
∗ = Q

−1
3

∑

i=1

L
†
i (ri − zi). (19)

The minimization overri can be carried out for alli simulta-
neously since the problems are decoupled. Assumei is fixed and
also assume thatx andzi are fixed. Then the minimizer ofLγ with
respect tori is

r
∗
i = arg min

ri∈CN
fi(ri)+

1

γ
z
†
i (Lix−ri)+

1

2γ
‖Lix−ri‖22. (20)

After some algebraic manipulations and adding the term1
2
zH
i zi to

(20) we get

r
∗
i = arg min

ri∈CN
γfi(ri) +

1

2
‖ri − (Lix+ zi)‖22, (21)
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which is nothing but the proximity operator ofγfi applied toLix+
zi. Thus, the minimizer with respect tori is computed as

r
∗
i = proxγfi(Lix+ zi). (22)

The maximization over the dual variables is performed using
a gradient ascend method. Again the optimization with respect to
zi can be carried out simultaneously for alli since the problems are
decoupled. Thus, for a fixedi the problem becomes

z
∗
i = argmax

zi

J = argmax
zi

z
†
i (Lix

∗ − r
∗
i ). (23)

The gradient ofJ with respect tozi is given byLix
∗−r∗

i . There-
fore, the dual ascend method yields updates of the form

z
(t)
i = z

(t−1)
i + Lix

∗ − r
∗
i , (24)

for each iteration of the algorithm, wheret denotes the iteration
variable.

Note that the above described procedure can be easily ex-
tended forS functions, thus providing a flexible framework for
incorporating additional prior information either in the form of con-
vex constraints or as additional convex penalty functions.The ex-
pressions in (19), (22) and (24) constitutes the main iteration steps
in our SDMM based solver, which is detailed in the next section.

4.4 Implementation details

The resulting algorithm is summarized in Algorithm1 whereS =
3. The algorithm is run for a fixed number of iterations,Tmax, or
until a stopping criteria is met. The algorithm is stopped ifthe rel-
ative variation between the objective function evaluated at succes-
sive solutions,ζ = |f1(L1x̂

(t)) − f1(L1x̂
(t−1))|/|f1(L1x̂

(t−1))|,
is smaller than some boundξ ∈ (0, 1) and if the normalized resid-
ual ν = ‖y − L2x̂

(t)‖2/ǫ is within the interval[1 − τ, 1 + τ ] for
some toleranceτ ∈ (0, 1), τ ≪ 1. In our implementation we fix
ξ = 10−3 andτ = 10−1.

Algorithm 1 SDMM

1: Initialize γ > 0, x̂(0) andz(0)
i = 0, i = 1, . . . , S.

2: r
(0)
i = Lix̂

(0), i = 1, . . . , S.
3: x

(0)
i = L

†
ir

(0)
i , i = 1, . . . , S.

4: for t = 1, . . . , Tmax do
5: x̂(t) = Q

−1 ∑S
i=1 x

(t−1)
i .

6: for all i = 1, . . . , S do
7: r

(t)
i = proxγfi

(Lix̂
(t) + z

(t−1)
i ).

8: z
(t)
i = z

(t−1)
i + Lix̂

(t) − r
(t)
i .

9: x
(t)
i = L

†
i (r

(t)
i − z

(t)
i ).

10: end for
11: if x̂(t) meets halting criteriathen
12: Break.
13: end if
14: end for
15: return x̂(t)

In the following we detail the computation of the proximity
operators used in Algorithm1. To compute the proximity oper-
ator of f1, let us first define it entrywise as follows:f1(r1) =
‖Wr1‖1 =

∑D
j=1 ωj |r1,j |, whereωj = Wjj (sinceW is a diago-

nal positive matrix) and| · | denotes the norm of a complex number.
Sincef1 can be split as the sum of independent components ofr1,
the proximity operator ofγf1(r1) is given by

proxγf1
(r1) = Sγ(r1) = {proxγωj |·|

(r1,j)}16j6D , (25)

whereproxλ|·| is the entrywise soft-thresholding operator defined
asproxλ|·|(a) = a

|a|
(|a| − λ)+, with (·)+ = max(0, ·). The

proximity operator off2(r2) = iB(r2) is the projector onto the
convex setB = {r2 ∈ C

M : ‖y − r2‖2 6 ǫ}, and is computed as

proxγf2(r2) = min(1, ǫ/‖r2‖2)r2, (26)

which is independent ofγ. The proximity operator off3(r3) is the
projector onto the positive orthant and is given by

proxγf3
(r3) =

{

(r3,j)
+}

16j6N
, (27)

which is also independent ofγ. SeeCombettes & Pesquet(2011)
and references therein for derivation of these results.

The bottleneck of Algorithm1, in terms of computational re-
sources, is the inversion of the matrixQ. To invert this matrix we
use the conjugate gradient algorithm (Saad 2003) to solve the sys-
temQx̂(t) =

∑3
i=1 x

(t−1)
i . The conjugate gradient algorithm is

an iterative process that involves one matrix multiplication by Q

at each iteration. Given thatQ = Φ
†
Φ + ΨΨ

† + I , in general,
each iteration requires one computation of the sensing operatorΦ
and its adjoint, and, one computation of the sparsity operatorΨ and
its adjoint. If we restrict the algorithm to use Parseval frames, i.e.
ΨΨ† = I , the computation time can be considerably reduced since
nowQ = Φ

†
Φ+ 2I . Examples of Parseval frames are orthogonal

bases and the concatenation of orthogonal bases used in SARA.
Another important consideration in Algorithm1 is the choice

of the penalty parameterγ. In theory anyγ > 0 guarantees con-
vergence of the algorithm. However, in practice the convergence
speed of the algorithm is severely affected by the value of this pa-
rameter. As it can be observed from the augmented Lagrangian
function (14), small values ofγ place a large penalty on violations
of primal feasibility, thus enforcing fast convergence of the dual
variableszi. Conversely, large values ofγ place more weight on
the original functionsfi, thus achieving a faster convergence rate
on the objective function. Before discussing how to set the value
of this parameter note that the proximity operators off2 andf3,
(26) and (27), are independent of the value ofγ sincef2 andf3
are indicator functions and the only effect ofγ in Algorithm 1 is in
the proximity operator off1. Therefore,γ should scale withΨ†x∗,
wherex∗ denotes the true signal. Sincex∗ is unknown, we propose
to set the penalty parameter asγ = β‖Ψ†

Φ
†y‖∞, i.e. a constant

times the peak value of the dirty image in the sparsity domain. In
our implementation we fixβ = 10−3.

4.5 Parallel and distributed optimization

The SDMM structure offers several degrees of parallelization that
can be further exploited. Firstly, the proximity operatorscan be
implemented in parallel providing an acceleration factor of three.
Secondly, as can be seen from (25), (26) and (27), the computation
of the proximity operators is very simple and could support ahigh
level of parallelization since it mostly involves simple entrywise
operations. Finally, in the case of large-scale data problems, i.e.
large number of visibilitiesM ≫ N , the visibilities can no longer
be processed on a single computer but rather in a computer cluster
thus requiring a distributed processing of the data for the image
reconstruction task. In this distributed scenario the datavectory
and the measurement operator can be partitioned intoR blocks in
the following manner:

y =







y1

...
yR






andΦ =







Φ1

...
ΦR






, (28)
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whereyi ∈ C
Mi , Φi ∈ C

Mi×N andM =
∑R

i=1 Mi. Eachyi is
modelled asyi = Φix + ni, whereni ∈ C

Mi denotes the noise
vector.

With this partition the optimization problem in (9) can be
rewritten as

min
x̄∈RN

+

‖WΨ
†
x̄‖1 subject to‖yi − Φix̄‖2 6 ǫi, i = 1, . . . , R,

(29)
where eachǫi is an appropriate bound for theℓ2 norm of the noise
termni. Observe that (29) can be solved by SDMM (Algorithm1)
if we reformulate the problem as

min
x∈CN

f1(L1x) + . . .+ fS(LSx), (30)

with S = R + 2. In this formulationf1 and f2 denote theℓ1
sparsity term and the positivity constraint respectively,andf3 to
fS denote theR data fidelity constraints. ThusL1 = Ψ

†, L2 = I

andLi+2 = Φi for i = 1, . . . , S. Note that steps 7 to 9 in Algo-
rithm 1 can be computed in parallel for eachi. The advantages of
this distributed optimization approach are: (i) the visibilitiesyi and
the measurement operatorsΦi are local to each node in the cluster,
therefore the memory requirements are distributed amongR nodes,
with a data dimensionalityMi ≪ M ; (ii) the measurement oper-
atorsΦi, and their adjoint, are applied locally at each node thus
distributing the processing load, for acceleration of the reconstruc-
tion process; (iii) the central processing node, where the global
updatex̂(t) = Q

−1 ∑S
i=1 x

(t−1)
i is computed, and the parallel

nodes, where the local updatesx(t−1)
i are computed, only need to

exchange information of the size of the image vector at each it-
eration rather than of the size of the visibilities, thus alleviating
the communication requirements to transfer information between
nodes. Note that the composite operatorΦ

†
Φ, needed in the conju-

gate gradient solver for the global update, can be applied inparallel
by each node sinceΦ†

Φ =
∑R

i=1 Φ
†
iΦi. Although this approach

would distribute the processing load of the conjugate gradient step
into the parallel nodes, it would incur in a communication overhead
since each parallel node needs to communicate its result at each it-
eration of the conjugate gradient algorithm. One approach that can
be used to avoid this situation is to precompute and store thecom-
posite operatorΦ†Φ in the central processing node. The aforemen-
tioned distributed optimization approach could be very appealing
for next-generation telescopes where massive amounts of data are
acquired. These distributed optimization ideas are not implemented
in the beta version of PURIFY, discussed in Section5, and are the
subject of ongoing work.

5 THE PURIFY PACKAGE

PURIFY4 is a collection routines written in C that implements dif-
ferent tools for RI imaging including file handling (for bothvisibil-
ities and fits images), implementation of the measurement operator
and set-up of the different optimization problems used for image
deconvolution. The code calls the generic Sparse OPTimization
(SOPT5) package, which is also written in C, to solve the imaging
optimization problems. In the following we describe the different
features included in PURIFY and SOPT. Note that the name PU-
RIFY has no other meaning than that of a powerful alternativeto
CLEAN.

4 The package available athttp://basp-group.github.io/purify/.
5 The package available athttp://basp-group.github.io/sopt/.

The optimization problems solved by SOPT within the
SDMM structure are: (i) the weightedℓ1 minimization problem
in (9) and (ii) the weighted TV minimization problem similar to
(6) but with the TV norm replaced by a by a weighted TV norm
defined as‖x̄‖WTV = ‖W∇x̄‖1 whereW is a matrix with pos-
itive weights applied to the image gradient. The non-reweighted
problems can be solved just by setting the weight matrix to the
identity matrix. In the case of the reweighted TV problemf1(x) =
‖x̄‖WTV, with the proximity operator computed using the fast first
order iterative method described inBeck & Teboulle(2009a). For
theℓ1 problems a set of different dictionaries is supported, includ-
ing: the Dirac basis, the Daubechies wavelets family and thecon-
catenation of any of these bases.

For the measurement operator, PURIFY implements a non-
uniform FFT that maps a discrete image into continuous visibilities
(Greengard & Lee 2004). The operator is defined as

Φ = GFDZB. (31)

The matrixB ∈ R
N×N is the diagonal matrix implementing the

primary beam. The operatorZ ∈ R
N′×N denotes the zero padding

operator withN ′ = kN andk > 2 needed to compute the dis-
crete Fourier transform ofx on an oversampled grid and achieve
higher accuracy. The unitary matrixF ∈ C

N′×N′

denotes the
discrete Fourier transform. The matrixG ∈ R

M×N′

represents
a convolutional interpolation operator to model the map from a
discrete frequency grid onto the continuous plane so that the FFT
can be used to implementF. PURIFY supports a Gaussian ker-
nel in the frequency domain with a compact support, but support
for other convolutional interpolation kernels can easily be included.
Due to the kernel’s compact support, the matrixG is highly sparse
therefore allowing fast matrix-vector multiplications. The operator
D ∈ R

N′×N′

is a diagonal matrix that in practice implements a
discrete version of the reciprocal of the inverse Fourier transform
of the interpolation kernel, i.e.d = 1/ĝ, whereĝ denotes the in-
verse Fourier transform of the continuous interpolation kernel. The
idea behind this procedure is to undo the effects of the convolution
by the interpolation kernel in the frequency domain by dividing by
the inverse Fourier transform of the interpolation kernel in the spa-
tial domain. This operator and its adjoint are implemented in the
package. Although the current version of PURIFY only supports
the Gaussian kernel, other interpolation kernels, such as prolate
spheroidal wave functions (Thompson et al. 2001), will be incor-
porated in future versions.

Also note that our framework can easily incorporate DDEs, in
particular thew-component effect, as additional convolution ker-
nels in the frequency plane entering the matrixG. Again, compact
support of those kernels will ensure sparsity ofG, in turn ensuring
its necessary fast implementation. This represents an alternative to
thew-projection and theA-projection algorithms (Bhatnagar et al.
2008b,a). SeeWolz et al.(2013) for first steps in these directions.

Careful attention has been paid to the design of the inter-
faces of PURIFY. The solvers receive the measurement operators
as pointers to functions implementing the forward and adjoint op-
erators with a generic signature, thus other measurements opera-
tors can easily be used. Weighting matrices, such as complexan-
tenna gains and natural or uniform weighting matrices, are not sup-
ported in the current implementation but their incorporation into
the measurement operator is straightforward. The same philosophy
is adopted for the sparsity operators allowing the incorporation of
any sparsity dictionary. These interfaces will facilitatedirect inte-
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gration with standard packages for interferometric imaging such as
CASA6.

The current version of SOPT does not exploit the parallel
structure of SDMM. Firstly, the proximity operators are imple-
mented in a serial manner rather than in parallel. Secondly,the
computation of each proximity operators is implemented serially
rather than in parallel thus not exploiting its separable structure.
The only parallel structure that is exploited is the implementation
of the sparsity averaging operator in SARA, i.e. each decomposi-
tion on the basis in the operator are computed in parallel. Therefore
the highly redundant dictionary in SARA has an implementation as
fast as a single orthonormal basis, which already represents a sig-
nificant advantage. As discussed in Section4.4, the computation of
the measurement operatorΦ is a major bottleneck for very high di-
mensional problems. In this case the measurement operatorΦ can
be parallelized by implementing a parallel matrix-vector product
for the sparse matrixG, e.g. partitioningG into several blocksGi

as done in (28) for Φ. Similar strategies might be adopted for the
sparsity operatorΨ. As discussed in Section4.4 the global update
x̂(t) = Q

−1 ∑S
i=1 x

(t−1)
i is the main bottleneck of the algorithm.

One approach that could be implemented here is to precompute
and store the sparse matrixG†

G =
∑R

i=1 G
†
iGi to accelerate the

conjugate gradient solver7. These optimizations are the subject of
ongoing work.

6 SIMULATIONS AND RESULTS

In this section we illustrate the performance of the imagingalgo-
rithms implemented in PURIFY by recovering well known test im-
ages from simulated continuous frequency visibilities. The test im-
ages used in all simulations are M31, based on a HII region in the
M31galaxy, and 30Dor, the 30 Doradus in the Large Magellanic
Cloud. These images present different compact and extendedstruc-
tures thus being good candidates to evaluate different regularization
priors. Figure1 shows the 256×256 discrete models of M31 (left)
and 30Dor (middle) used as ground truth images8.

For our evaluation we compare constrainedℓ1 and TV mini-
mization problems, as well as their reweighted versions, interms
of reconstruction quality and computation time. For theℓ1 prob-
lems we study three different dictionariesΨ in (9): the Dirac basis,
the Daubechies 8 wavelet basis and the Dirac-Db1-Db8 concatena-
tion highlited for the SARA algorithm in Section3.3. The asso-
ciated algorithms are respectively denoted BP, BPDb8 and BPSA
for the non-reweighted case. The reweighted versions are respec-
tively denoted RWBP, RWBPDb8 and SARA. We also study the
TV minimization problem in (6) with the additional constraint that
x̄ ∈ R

N
+ , denoted as TV, and its reweighted version, denoted as

RWTV. Recall thatℓ1 minimization with a Dirac basis yields recon-
struction qualities similar to CLEAN, thus we use BP as a proxy for
CLEAN. Also, we use BPDb8 as a proxy for MS-CLEAN recon-
struction quality sinceLi et al. (2011) reported that the isotropic un-
decimated wavelet transform outperformed MS-CLEAN andCar-
rillo et al. (2012) reported that BPDb8 outperformed the isotropic
undecimated wavelet transform in the discrete setting.

6 http://casa.nrao.edu/.
7 Note thatSullivan et al.(2012) also proposed to precomputeG†G to ac-
celerate a CLEAN-based algorithm.
8 Available athttp://casaguides.nrao.edu/index.php.

We use as reconstruction quality metric the signal to noise ra-
tio (SNR), which is defined as:

SNR = 20 log10

(

‖x‖2
‖x− x̂‖2

)

(32)

wherex andx̂ denote the the original image and the estimated im-
age respectively. The visibilities are corrupted by complex Gaus-
sian noise with a fixed input SNR set to 30 dB. The input SNR is
defined asISNR = 20 log10(‖y0‖2/‖n‖2), wherey0 identifies
the clean measurement vector. Assuming visibilities corrupted by
i.i.d. complex Gaussian noise with varianceσn, the bound on the
ℓ2 norm term in (9), ǫ, is identical to a bound on aχ2 distribu-
tion with 2M degrees of freedom. Therefore, we set this bound as
ǫ2 = (2M + 4

√
M)σ2

n/2, whereσ2
n/2 is the variance of both the

real and imaginary parts of the noise. This choice provides alikely
bound for‖n‖2 (Carrillo et al. 2012). We use the measurement
operator described in (31) with B = I and an oversampling factor
k = 2.

The first experiment in this section considers incomplete vis-
ibility coverages generated by random variable density sampling
profiles. Such profiles are characterized by denser samplingat low
spatial frequencies than at high frequencies. This choice mimics
common generic sampling patterns in radio interferometry.In or-
der to make the simulated coverages more realistic we suppress the
(0, 0) component of the Fourier plane from the measured visibil-
ities. This generic profile approach allows us to make a thorough
study of the reconstruction quality of the imaging algorithms with
a large numbers of simulations for arbitrary number of visibilities
and without concern for various telescope configurations. We vary
the number of visibilities fromM = 0.2N to M = 2N . Re-
construction results for M31 and 30Dor are reported in the top and
bottom rows of Figure2 respectively. Average values over 30 simu-
lations and associated one standard deviation error bars are reported
for all plots.

The left panel of Figure2 shows SNR results for M31 (top)
and 30Dor (bottom). The results show that SARA outperforms all
other methods in reconstruction quality for both images. This con-
firms previous results reported byCarrillo et al.(2012) in the dis-
crete case now for the more realistic continuous Fourier setting, in-
cluding the case whenM > N . Interestingly, BPSA shows the best
reconstruction quality over all non-reweighted methods for both
images. The results for M31, which exhibits a compact support
with some extended structures, show that the second best method
is RWBPDb8 having SNRs at most 4 dB below SARA. The results
for 30Dor, which is a more complicated image with both extended
structures and compact structures, show that TV and RWTV offer a
good model for continuous extended structures achieving SNRs at
most 2 dB below SARA. Note that BP and its reweighted version
do not achieve good results for this image, as expected sincethe
Dirac basis is not a good model for extended structures, achieving
SNRs at least 4 dB below all other methods for coverages above
M = 0.2N .

Computation times, on a 2.4 GHz Xeon quad core and us-
ing the current non-optimized software version, are reported in the
right panel of Figure2 for M31 (top) and 30Dor (bottom). As ex-
pected the reweighted methods are most costly having reconstruc-
tion times ranging from tens of minutes forM = 0.2N to one
hour for M = 2N . Even though the concatenation of bases in
SARA makes the algorithm structure more costly in theory, the
parallel implementation of the bases in SARA yields a competi-
tive algorithm in terms of computation time. In fact, the results
show that RWBPDb8, with a single wavelet basis, is the slowest
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Figure 1. Left and middle panels: original 256×256 test images, M31 (left) and 30Dor (middle), shown in alog10 scale with brightness values in the interval
[0.01, 1]. Right panel: Example of a simulated variable density coverage in the Fourier plane (M = 26374 ≈ 0.4N ).
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Figure 2. Reconstruction results for M31 (top row) and 30Dor (bottom row) 256×256 test images. Left column: average reconstruction SNR against
normalized number of visibilitiesM/N . Right column: average computation time. Vertical bars identify one standard deviation errors around the mean over
30 simulations. The input SNR is set to 30 dB. The results showthat SARA outperforms all other methods in terms of reconstruction quality for both images.

method and the most unstable with respect to convergence rate, as
can be observed from the large error bars. This result indicates
that RWBPDb8 might need more iterations to achieve convergence
than other methods. RWTV reports similar reconstruction times to
SARA. The results also show that the non-reweighted methodsare

fast, achieving reconstruction times below 10 minutes for all cover-
ages, except for TV in 30Dor which has a similar behaviour as the
reweighted methods. An interesting observation is that therecon-
struction times scale linearly with the number of visibilities for the
reweighted methods. This is due to the fact that the complexity of
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the SDMM algorithm is dominated by the cost of solving the linear
system at step 5 of Algorithm1, which needs to apply the sens-
ing operatorΦ and its adjoint at every iteration of the conjugate
gradient algorithm. Therefore beyond having a fast implementa-
tion of Φ, alternative strategies to accelerate the solution of the lin-
ear system should be explored such as the use of preconditioned
conjugate gradient solvers and faster implementations of the Gram
matrixΦ†

Φ.
Next we present a visual assessment of the reconstruction

quality of the different algorithms. Figure3 and Figure4 show
the results from M31 and 30Dor respectively for au-v coverage
of M = 26374 ≈ 0.4N visibilities. The results are shown
from top to bottom for SARA, RWBPDb8, RWTV and RWBP re-
spectively. The first column shows the reconstructed imagesin a
log10 scale, the second column shows the error images, defined as
x− x̂, in linear scale, and, the third column shows the real part of
the residual dirty images, defined as the difference betweendirty
images and dirty images constructed from recovered images,i.e.
r = Φ†y − Φ†Φx̂, also in linear scale. These images confirm the
previous results found by examining recovered SNR levels; SARA
yields reconstructed images with fewer artifacts in the background
regions and smaller errors in the structured inner regions than the
other methods. Interestingly RWBPDb8 yields a nearly flat resid-
ual map for 30Dor. However, this does not necessarily translate into
a better reconstruction quality as can be observed in the error im-
age. This phenomenon can also be seen in the reconstructed image
by RWTV of 30Dor, which shows a small error image compared
to RWBPDb8 but showing a residual map with a lot of structures.
This highlights the fact that the common criterion of flatness of
residual image is not an optimal measure of reconstruction fidelity
as emphasized in our previous work (Carrillo et al. 2012).

The last experiment presents an illustration with a realistic ra-
dio telescope coverage. We use a simulation of the ArcminuteMi-
crokelvin Imager (AMI) (Zwart et al. 2008) array to obtain au-v
coverage withM = 9413 points. For this experiment we use a low
resolution 128×128 version of M31. The top row in Figure5 shows
the original test image inlog10 scale, theu-v coverage and the
corresponding dirty image in linear scale. The SNR of the recov-
ered image for each algorithm is as follows: BP (10.7dB), RWBP
(SNR=10.9 dB), BPDb8 (11.6 dB), RWBPDb8 (SNR=12.3 dB),
TV (10.6 dB), RWTV (10.5 dB), BPSA (12.4 dB) SARA (14.3 dB).
The second and third rows in Figure5 show the reconstructed im-
ages along with the corresponding error and residual dirty images
images for SARA, RWBPDb8 and RWBP. SARA provides not only
a SNR increase but also a significant reduction of visual artifacts
relative to all other methods.

7 CONCLUDING REMARKS

In this paper we have proposed an algorithmic framework based on
the simultaneous-direction method of multipliers to solvesparse
imaging problems in RI imaging. The new algorithm provides a
parallel implementation structure, therefore offering anattractive
framework to handle continuous visibilities and associated high
dimensional problems. A variety of state-of-the-art sparsity reg-
ularization priors, including our recent average sparsityapproach
SARA, as well as discrete and continuous measurement operators
are available in the new PURIFY software. Source code for PU-
RIFY is publicly available. Experimental results confirm both the
superiority of SARA for continuous Fourier measurements and the

fact that the new algorithmic structure offers a promising path to
handle large-scale problems.

In future work we will extend the current PURIFY implemen-
tation to take full advantage of the parallel and distributed struc-
ture of SDMM as discussed in Section4.5. We expect that paral-
lel and hardware implementations of the measurement and sparsity
operators as well as the proximity operators could achieve drastic
accelerations of the algorithms. Also, different strategies will be
explored to accelerate the convergence of the conjugate gradient
solver, e.g. using preconditioners for the operatorQ and precom-
puting the sparse matrixG†G to avoid multiplications byG andG†

separately, which involve an intermediate high dimensional vec-
tor of lengthM > N , at each iteration of the conjugate gradient
solver. Finally, DDEs will be incorporated into PURIFY. Recall
that DDEs can easily be included in the matrixG as additional con-
volution kernels in the frequency plane. Compact support kernels
will ensure sparsity ofG and a fast matrix-vector multiplication. In-
tegration with standard packages for interferometric imaging, such
as CASA, will allow to take advantage of their built-in real data
handling and also to have a full comparison with standard algo-
rithms such as MS-CLEAN and ASP-CLEAN.
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Figure 3. Reconstruction example of M31 (256×256) for au-v coverage withM = 0.4N sampling frequencies. The results are shown from top to
bottom for SARA (SNR=32.4 dB), RWBPDb8 (SNR=30.6 dB), RWTV (SNR=28.6 dB) and RWBP (SNR=23.4 dB) respectively. The first column shows the
reconstructed images in alog10 scale, the second column shows the error images in linear scale, and the third column shows the residual dirty images alsoin
linear scale.
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Figure 4. Reconstruction example of 30dor (256×256) for au-v coverage withM = 0.4N sampling frequencies. The results are shown from top to
bottom for SARA (SNR=25.3 dB), RWBPDb8 (SNR=22.6 dB), RWTV (SNR=24.1 dB) and RWBP (SNR=18.8 dB) respectively. The first column shows the
reconstructed images in alog10 scale, the second column shows the error images in linear scale, and the third column shows the residual dirty images alsoin
linear scale.
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Figure 5. AMI coverage example. First row from left to right: originalM31 128×128 test image inlog10 scale,u-v coverage in normalized angular
frequency units (M = 9413) and corresponding dirty image in linear scale. Second to last rows: reconstruction results for SARA (SNR=14.3 dB), RWBPDb8
(SNR=12.3 dB) and RWBP (SNR=10.9 dB). The first column shows the reconstructed images in alog10 scale, the second column shows the error images in
linear scale, and the third column shows the residual dirty images also in linear scale.
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