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ABSTRACT

In a recent article series, the authors have promoted coopériization algorithms for
radio-interferometric imaging in the framework of commed sensing, which leverages
sparsity regularization priors for the associated invgmsgblem and defines a minimiza-
tion problem for image reconstruction. This approach waswvsh in theory and through
simulations in a simple discrete visibility setting, to kathe potential to outperform sig-
nificantly CLEAN and its evolutions. In this work, we levemthe versatility of convex
optimization in solving minimization problems to both héadealistic continuous visibil-
ities and offer a highly parallelizable structure paving tlay to significant acceleration
of the reconstruction and high-dimensional data scatgbilthe new algorithmic structure
promoted relies on the simultaneous-direction method dfipliers (SDMM), and contrasts
with the current major-minor cycle structure of CLEAN and évolutions, which in par-
ticular cannot handle the state-of-the-art minimizatioobpems under consideration where
neither the regularization term nor the data term are difféable functions. We release
a beta version of an SDMM-based imaging software written iar@ dubbed PURIFY
(http:// basp-group. github.io/purify/)thathandles various sparsity priors, in-
cluding our recent average sparsity approach SARA. We atathe performance of different
priors through simulations in the continuous visibilityttseg, confirming the superiority of
SARA.

Key words. techniques: image processing — techniques: interferdenetr

1 INTRODUCTION achieve much higher dynamic range than current instrumalss

at higher angular resolution. Also, these telescopes wiluae a
massive amount of data, thus posing large-scale probletassi€
cal imaging techniques developed in the field, such as theADLE
algorithm and its multi-scale variantsiggbom 1974 Bhatnagar

& Cornwell 2004 Cornwell 2008, are known to be slow and to
provide suboptimal imaging quality.i et al. 20121 Carrillo et al.
2012. This state of things has triggered an intense researafto r
formulate imaging techniques for radio interferometry he per-
spective of next-generation instruments.

Radio interferometry is a powerful technique that allowseba-
tion of the radio emission from the sky with high angular taon

and sensitivity, providing valuable information for agthysics, as-
trometry and cosmologyRyle & Vonberg 1946Blythe 1957 Ryle

etal. 1959Ryle & Hewish 196Q) Thompson et al. 2001 The mea-
surement equation for radio interferometry defines andiea lin-
ear inverse problem in the perspective of signal reconstrucUn-

der restrictive assumptions of monochromatic non-podarimag-
ing on small fields of view (FOV), the measured visibilitietates
to Fourier measurements of the observed signal. Next-ggaer

radlcg telescopes, such as the new LOw Frequency ARray (LO- 5cquisition and reconstruction framework that goes beybedra-
FAR'), or the recently upgraded Karl G. Jansky Very Large A~ gitional Nyquist sampling paradignbonoho 2006 Candés 2006
ray (VLA?), or the future Square Kilometer Array (SKA wil Baraniuk 2007 Fornasier & Rauhut 2031 Recently, CS and con-
vex optimization techniques have been applied to imagerdeco
lution in radio interferometry\Wiaux et al. 20094p; Wenger et al.

The theory of compressed sensing (CS) introduces a signal

* E-mail: rafael.carrillo@epfl.ch ) . !

1 http://ww. | ofar. org/ 201Q.McEwen.8f Wiaux 2011 Li et al. 2011. Carrillo et gl. 2912

2 https://science.nrao.edu/facilities/vla showing promising results. These techniques promise inegro
3 http://ww. skat el escope. or g/ image fidelity, flexibility and computation speed over ttamtial
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approaches. This speed enhancement is crucial for thebfitgla
of imaging techniques to very high dimensions in the persgec
of next-generation telescopes. However, CS-based imadgtig
nigues have only been studied for low dimensional discrisigil+

ity coverages. The works iiaux et al.(2009gb) and McEwen

& Wiaux (2011 consider idealised random and discrete visibility
coverages in order to remain as close to the CS theory asjmssi
First steps towards more realistic visibility coveragesenbeen
taken byWenger et al(2010 andLi et al. (2011), who consider
coverages due to specific interferometer configurationsmbitth
remain discrete.Carrillo et al. (2012 consider variable density
sampling patterns, which mimic common generic sampling pat
terns in radio-interferometric (RI) imaging but also reniag dis-
crete. These preliminary works suggest that the performah€S
reconstructions is likely to hold for more realistic vidityi cover-
ages. Therefore, the extension of CS techniques to moristieal
continuous interferometric measurements is of great itapoe.

In the present work, we extend the previously proposed imag-
ing approaches iWiaux et al. (20093, Wiaux et al. (2009b
and Carrillo et al. (2012 to handle continuous visibilities and
open the door to large-scale optimization problems. We pro-
pose a general algorithmic framework based on the simutasie
direction method of multipliers (SDMM) to solve sparse irmag
problems. The proposed framework offers a parallel impleme
tation structure that decomposes the original problem seiral
small simple problems, hence allowing implementation inl-mu
ticore architectures or in computer clusters, or on graplpio-
cessing units. These implementations provide both flefihih
memory requirements and a significant gain in terms of speed,
thus enabling scalability to large-scale problems. SDMihds
in stark contrast with the current major-minor cycle stanetof
CLEAN and evolutions, which in particular cannot handle the
state-of-the-art minimization problems under considera{Car-
rillo et al. 2013, where neither the regularization term nor the data
term are differentiable functions. We release a beta versfan
SDMM-based imaging software written in C and dubbed PURIFY
(http://basp-group.github.io/purify/)thathandles
various sparsity priors, including our recent average spaap-
proach SARA Carrillo et al. 2012, thus providing a new powerful
framework for Rl imaging. We evaluate the performance dedif
ent priors through simulations in the continuous visipiketting.
Simulation results confirm the superiority of SARA for contous
Fourier measurements. Even though this beta version of PURI
is not parallelized, we discuss in detail the extraordirnaayallel
and distributed optimization potential of SDMM, to be exf#d in
future versions.

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the theory of CS briefly. In Secti@hwe recall
the inverse problem for image reconstruction from RI dathder
scribe the state-of-the-art image reconstruction tectesqised in
radio astronomy. Sectiofh presents the SDMM-based algorithm
for RI imaging, which enables the incorporation of any conve
sparsity regularization prior. In Secti@we describe the PURIFY
package, including implementation details. Numericalitssval-
uating the different regularization priors included in PBR in
particular SARA, are presented in Secti@nFinally we conclude
in Section?.

2 COMPRESSED SENSING

CS introduces a signal acquisition framework that goes iegyo
the traditional Nyquist sampling paradigi@gnoho 2006 Candes
2006 Baraniuk 2007 Fornasier & Rauhut 2031 demonstrating
that sparse signals may be recovered accurately from inetenp
data. Consider a complex-valued sigmale C~, assumed to
be sparse in some orthonormal bagisc CV*V with K < N
nonzero coefficients, and also consider the measuremengélmod
y = dx + n, wherey € CM denotes the measurement vector,
® e CM*¥ is the sensing matrix and € C represents the ob-
servation noise. The standard conditibh < N characterizes the
incompleteness of the data. The most common approach teareco
x from y is to solve the following convex problenf@rnasier &
Rauhut 201}

min ||&||; subject tojy — dWa(l2 < e, (1)

acCN
wheree is an upper bound on th& norm of the noise ang - ||1
denotes thé; norm of a complex-valued vector. The signal is re-
covered ast = V&, wherea denotes the solution to the above
problem. Such problems that solve for the representatiotmef
signal in a sparsity basis are known as synthesis-baseteprsb

The standard theory of CS provides results for the recovery
of « from y if ® obeys a Restricted Isometry Property (RIPQI-
nasier & Rauhut 2091 A sufficient condition is thai\/ is larger
than roughly the signal sparsity/ > 2K < N. Note that in-
complete Fourier measurements, on discrete or continymatab
frequencies, represent a good sampling approach in thiexton
In the continuous setting, the theory applies also fér > N.
It is not strictly “compressed” sensing any more but the isge
problem remains ill-posed. The basic theory also requifés be
orthonormal. However, signals often exhibit better sprisi an
overcomplete dictionary@ribonval & Nielsen 2003Bobin et al.
2007 Starck et al. 2010 Therefore recent works have begun to
address the case of CS with redundant dictionaries. In étimg
the signalz is expressed in terms of a dictionawy ¢ CV*P,
N < D, asz = Va, a € CP. Rauhut et al(2008 find condi-
tions on the dictionary such that the compound matid¥ obeys
the RIP to accurately recovex by solving a synthesis-based prob-
lem. Note that the problem is now more severely underterthine
since the dimensionality of the unknonw has increased f\ito
D.
As opposed to synthesis-based problems, analysis-basied pr

lems recover the signal itself solving:

min ||WZ|; subject to|y — ®E||s < e,

zcCN

@)

wherew denotes the adjoint operatorwt In this paper the super-
script’ is used to denote both operator adjoint or conjugate trans-
pose.Candes et ali2010 provide a theoretical analysis of tiie
analysis-based problem, extending the standard CS theooher-
ent and redundant dictionaries. They provide theoretitzddilty
guarantees based on a general condition of the sensingkrdatri
coined the Dictionary Restricted Isometry Property (D-RIN¥ote
that in the case when redundant dictionaries are used, tigsi
problem does not increase the dimensionality of the prolasrit
solves for the signal itself. Empirical and theoreticaldsts have
shown clear advantages of the analysis approach over tlieesyn
sis approach for imaging problem@drrillo et al. 2013 SeeNam

et al. (2013 and references therein for further discussion of the
analysis model.

© 2013 RAS, MNRASO0O, 1-14


http://basp-group. github.io/purify/

3 RADIO-INTERFEROMETRIC IMAGING

3.1 Interferometricinverse problem

A radio interferometer is an array of spatially separateamas
that takes measurements of the radio emissions of the skgath
called visibilities. The visibility coordinates are givéy the rel-
ative position between each pair of antennas. The basetime c
ponents(u, v, w) are measured in units of the wavelengtbf the
incoming signal. The components = (u, v) specify the planar
baseline coordinates, while the third components associated
with the basis vector of the coordinate pointing towardscdeter
of the FOV of the telescope. The sky brightness distributiaan
be described in the same coordinate system as the baselthe, w
componentgl, m,n) wherel = (I,m) denotes the coordinates
on the image plane and(l) = /1 — 12 —m?2. The general RI
equation for monochromatic non-polarized imaging reads as

y(u) = /A (Lw)z (1) e 2™t a2, 3)

whereA (I,u) = A’ (I,u)n~" (1) andA’ (1, u) stands for all con-
tributions of direction dependent effects (DDE). ExampeSDESs
are the primary beam, which limits the observed FOV, anduthe
terme~ 27w (r(D=1 Thjs general equation defines a linear inverse
problem in the perspective of recovering the intensity aigrfrom
the measured visibilitiedRau et al. 200 Under the assumptions
of small FOV ¢ ~ 1) or when the array is coplanaw (= 0), each
visibility corresponds to the measurement of the Fouremgform

of a planar signal at the spatial frequengy This result is known
as the van Cittert-Zernike theoremhompson et al. 2001 The
total number of points: probed by all telescope pairs of the array
during the observation provides some incomplete covenagkei
Fourier plane, the so-calledv coverage, characterizing the inter-
ferometer.

To recover the source image from incomplete visibility mea-
surements, we pose the inverse probléyidr a sampled version of
the image. The band-limited functions considered are cetalyl
identified by their Nyquist-Shannon sampling on a discreiéoum
grid of N = N'/2 x N/2 points in real space. The sampled inten-
sity signal is denoted by the vecterc R™ . We take)M visibilities
denoted by the vectay € C™, which are related to the discrete
image by the following linear model:

4)

whered ¢ CM*¥ represents the general linear map from the im-
age space domain to the visibility domain, which defines kn il
posed inverse problem in the perspective of image recarigini

In the particular case when the visibilities identify witloutier
samples the measurement essentially reduces to a Fourigr ma
sampled onM spatial frequencies (see el in Section5). In

a realistic continuous visibility setting, one usually hes > N
and sometimesd/ > N, which will be increasingly the case for
next-generation telescopes.

y=ox +n,

3.2 State-of-the-art of classicimaging algorithms

The most standard image reconstruction algorithm frombilisi
measurements is called CLEAN, which is a non-linear dedorvo
tion method based on local iterative beam remoktiigbom 1974
Schwarz 1978Thompson et al. 2001 A sparsity prior on the orig-
inal signal in real space is implicitly introduced thus alilg taking
advantage of CS theory guarantees. Furthermore, as distuss
Cornwell (2008 and Wiaux et al.(20093 the CLEAN algorithm

(© 2013 RAS, MNRASDQO, 1-14
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and its variants are examples of the Matching Pursuit alyori
(Mallat & Zhang 1993, which is well known in the CS commu-
nity. CLEAN can be considered as a steepest descend algdigth
minimize the objective function® = ||y — $x||3 subject to an
image model regularizatiorR@u et al. 200Q Most variants oper-
ate iteratively in two steps called the major and minor cyclehe
major cycle computes the residual imag® = ¢of(y — ¢x*),
which is the gradient of thg? objective function at iteration The
minor cycle regularizes the image update by applying anaiper
T, which represents a deconvolution of the operdtpto the resid-
ual image yielding updates of the form

2D = 2® 4 T(’I‘<t)). 5)

A multi-scale version of CLEAN, MS-CLEAN, has also been
developed Cornwell 2008, where the sparsity model is improved
by multi-scale decomposition, hence enabling better regoof
the signal. The MS-CLEAN method was shown to perform better
than the standard CLEAN, but still suffers from an empiraadice
of basis profiles and scales. An adaptive scale pixel deceimpo
tion method called ASP-CLEAN was also introduced to improve
on multi-scale CLEAN by relying on an adaptive choice of esal
(Bhatnagar & Cornwell 2004 ASP-CLEAN models an image as
a superposition of atoms in a redundant dictionary paraneetby
amplitude, location and scale. Thus, this algorithm cand®ns
as a Matching Pursuit algorithm with an overcomplete didiy.
Note that these approaches are known to be slow, sometiraes pr
hibitively so. Variants of CLEAN that addresses wide-bafidas,
or atmospheric effects have also been proposed in thetliterésee
Rau et al(2009, Bhatnagar et al2008g, Bhatnagar et a(2013
and references therein).

Another approach to the reconstruction of images from visi-
bility measurements is the Maximum Entropy Method (MEM). In
contrast to CLEAN, MEM solves a global optimization probleém
which the inverse problem is regularized by the introductid an
entropic prior on the signal, but sparsity is not explicitguired
(Cornwell & Evans 198b In practice, CLEAN and variants have
found more widespread application than MEM.

3.3 State-of-the-art of convex imaging algorithms

Reconstruction techniques based on CS and convex optiorizat
have also been proposed. The relationship between CLEAN and
£1 minimization coupled with a Dirac basis was first studied by
Marsh & Richardsor{1987. The first application of CS and con-
vex optimization to radio interferometry was performedWiaux

et al. (20093, where the versatility of the approach and its supe-
riority relative to standard interferometric imaging taejues was
demonstrated. It was reported that@minimization problem of
the form of (L) coupled with a Dirac basis yields similar reconstruc-
tion quality to CLEAN, while including a positivity constirg in a
convex formulation significantly enhances the reconsiwaajual-

ity relative to CLEAN. The spread spectrum phenomenon &ssoc
ated with thew component on wide FOV observations was shown
in Wiaux et al(2009h to underpin a significant enhancement of the
imaging quality independently of the sparsity basis choJdrese
considerations pave the way to potential optimizationtsgias at
the acquisition level in terms of antenna distribution desiA CS
approach was developed and evaluatebMigux et al.(2010 to re-
cover the signal induced by cosmic strings in the cosmiconiexe
backgroundMcEwen & Wiaux(2011) generalise the previous CS
imaging techniques to a wide FOV, recovering interferoroetn-
ages defined directly on the sphere, rather than a tangere. pdl
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of these works consider uniformly random and discrete Wisib
coverage in order to remain as close to the CS theory as passib
Wiaux et al.(2010 andMcEwen & Wiaux(2011) exploited the fact
that many signals in nature are also sparse or compresasiltie i
magnitude of their gradient space, in which case the totétian
(TV) minimization problem,

min_ |||ty subject to]y — ®z||2 < e, (6)
zeCN
has been shown to yield superior reconstruction resulte Tw
norm is defined agz||rv = ||VZ| 1, whereVZ denotes the image
gradient magnitudeRudin et al. 199

First steps towards more realistic visibility coverageseha
been taken bysuksmono(2009 and Wenger et al(2010, who
consider coverages due to specific interferometer configasabut
which remain discrete. The aforementioned works use theviel
ing unconstrained synthesis problem:

1 2 e
Join S lly — Val: + A&l @

where) is a regularization parameter that balances the weight be-

tween the fidelity term and the regularization terWenger et al.
(2010 reports superior reconstruction quality relative to atoau
matic CLEAN reconstruction and similar results relativeataser-
guided CLEAN reconstructiorl.i et al. (201]) studied a CS imag-
ing approach based off)(and the isotropic undecimated wavelet
transform, reporting results from discrete simulated cages of
ASKAP. The reconstruction quality of the isotropic undeated
wavelet transform method was reported to be superior teetbbs
CLEAN and MS-CLEAN. Minimization of the problen¥] is done
iteratively by a projected gradient algorithm with updatéshe
form:

®)

whereS, (+) is the soft-thresholding operator, which will be defined
in Section4.4. This algorithm can be seen as a major-minor cycle
update where the major cycle computes the gradient of theata
fidelity term and the minor cycle regularizes the solutiorapyply-

ing the soft-thresholding operator.

Carrillo et al.(2012 proposed an imaging algorithm dubbed
sparsity averaging reweighted analysis (SARA) based om- ave
age sparsity over multiple bases, showing superior renartiin
qualities relative to state-of-the-art imaging methodshie field.

A sparsity dictionary composed of a concatenationgdbases,
Vo= [U, WUy, ..., ¥, withw ¢ CN*P N < D, is used and
average sparsity is promoted through the minimization cfraaly-
sis{ prior, |[WTZ||o. The concatenation of the Dirac basis and the
first eight orthonormal Daubechies wavelet bases (Db1-Diz8)
proposed as an effective and simple candidate for a digtjoina
the RI imaging context. Se@arrillo et al.(2013 for further dis-
cussions on the average sparsity model, the dictionargtsmbeand
other applications to compressive imaging.

SARA adopts a reweighteti minimization scheme to pro-
mote average sparsity through the prio¥Z||o. The algorithm
replaces thé, norm by a weighted; norm and solves a sequence
of weighted/; problems where the weights are essentially the in-
verse of the values of the solution of the previous probl€andes
et al. 2008. The weighted’; problem is defined as:

atth =, (am Fuviol(y — q,wa(t))) :

©)

min WV z|, subject to]|ly — dx|j2 < e,
@eRf

whereW ¢ RP*P denotes the diagonal matrix with positive

weights andR% denotes the positive orthant &Y, which rep-
resents the positivity prior om. Note that problems of the form
(6) and Q) involve the minimization of a constrained problem with
non-differentiable functions, which rules out smooth pptation
techniques and do not fit in the major-minor cycle structuire o
CLEAN and the projected gradient algorithm. Therefore omstm
resort to more sophisticated optimization techniques keesthese
non-smooth problems.

4 A LARGE-SCALE OPTIMIZATION ALGORITHM
4.1 Proximal splitting methods

Convex optimization problems have many attractive progerin
particular the essential property that any local minimunstrhe
a global minimum and thus there exist efficient methods teesol
them. Among convex optimization methods, proximal spigti
methods offer great flexibility and are shown to capture axd e
tend several well-known algorithms in a unifying framewoBkx-
amples of proximal splitting algorithms include DouglaaeRford,
iterative thresholding, projected Landweber, projecteddignt,
forward-backward, alternating projections, alternatidigection
method of multipliers and alternating split BregmaDoMmbettes
& Pesquet 201)1 Proximal splitting methods solve optimization
problems of the form

min fi(z)+...+ fs(x),

xeRN

(10)

where f1(x), ..., fs(x) are convex lower semicontinuous func-
tions fromRY to R, not necessarily differentiable. Note that any
convex constrained problem can be formulated as an uneomsti
problem by using the indicator function of the convex comistr
set as one of the functions iA@), i.e. fx(x) = ic(x) whereC
represents the convex constraint set. The indicator fomctle-
fined asic(x) = 0if @ € C oric(x) = +oo otherwise, belongs
to the class of convex lower semicontinuous functions. Afsite
that complex-valued vectors are treated as real-valuednrgewith
twice the dimension (accounting for real and imaginarygart
Proximal splitting methods proceed by splitting the cdniri
tion of the functionsfi(x), ..., fs(z) individually so as to yield
an easily implementable algorithm. They are called prokipea
cause each non-smooth function i) is incorporated in the min-
imization via its proximity operator. The proximity opeoats an
extension of the notion of the set projection operator toemyen-
eral functions. Letf be a convex lower semicontinuous function
from RY to R, then the proximity operator of is defined as:
prox;(z) £ arg min f(z) + 1||a: —z||3. (11)
z€RN 2
Typically, the solution to 10) is reached iteratively by successive
application of the proximity operator associated with efactttion.
An important feature of proximal splitting methods is thagy of-
fer a powerful framework for solving convex problems in terof
speed and scalability of the techniques to very high dinuerssi
SeeCombettes & Pesqué201]) for a review of proximal splitting
methods and their applications in signal and image proogssi

4.2 Shortcomings of previously used algorithms

The works inWiaux et al.(20098, McEwen & Wiaux(2011) and
Carrillo et al.(2012 solved problems of the form irb), whereas
Wenger et al(2010 andLi et al. (2017 solved the unconstrained

© 2013 RAS, MNRASO0O, 1-14
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problem {). Unconstrained problems are easier to handle and there problem is also equivalent to solving

exist fast algorithms to solve them, such as the FISTA allgori
(Beck & Teboulle 2009h However, there is no optimal strategy
to fix the regularization parameter even if the noise levi&hiswn,
therefore constrained problems, such@sdffer a stronger fidelity
term when the noise power is known, or can be estimatgdori.
Hence, we focus our attention on solving probledj éfficiently.
Wiaux et al.(2009h, McEwen & Wiaux(2011) andCarrillo et al.
(2012 used a Douglas-Rachford splitting algorith@ombettes &
Pesquet 20070 solve Q) in a simple discrete setting. However, in
a realistic continuous setting this algorithm presentgsshort-
comings. In the following we discuss the main limitationstloé
Douglas-Rachford algorithm.

The Douglas-Rachford splitting algorithm solves the peatl
by iteratively minimizing the/; norm and then projecting the result
onto the constraint set’ = {x € CV : |jy — dz|» < ¢} NRY
until some stopping criteria is achieved. The projectiotodhe
set(’ is a hard optimization problem which in itself requires an
iterative algorithm such as the generalized forward-backval-
gorithm. This iterative algorithm requires knowledge of #xact
operator norm (maximum singular value) ®for at least a closed
upper bound to guarantee convergence. In the discretelmass-t
act operator norm can be computed and the algorithm ach&ves
fast convergence rate. However, in the continuous casepée o
ator norm is unknown and its estimation poses a new problém. |
the estimate of the operator norm is not precise enough,lgioe a
rithm takes many sub-iterations to converge. Hence, it ddd
advantageous to have an algorithm that does not need pidarikn
edge of the operator norm to achieve a fast convergenceAate.
other tenet of the Douglas-Rachford algorithm is that itsdoet
offer a parallel structure, which is a desirable propertyewkolv-
ing large scale-problems such as those envisaged for tlwemipg
telescopes. For these reasons, we propose to use the sietulta
direction method of multipliers (SDMM)Gombettes & Pesquet
2011 which is also tailored to solve problems of the form of
(10) and circumvents the shortcomings of a Douglas-Rachford ap
proach.

4.3 Simultaneous Direction Method of Multipliers (SDMM)

SDMM has two important properties: (i) it does not requiré di
ferentiability of any of the functions, and (ii) it offers aallel
implementation structure where all the proximity opersitcan be
computed in parallel rather than sequentialotnbettes & Pes-
quet 201). Such a parallel structure is useful when implementing
the algorithms on multicore architectures or on graphicE@ss-
ing units, thus providing a significant gain in terms of speed
scalability to large-scale problems. SDMM is a generalirabf
the alternating-direction method of multipliedyd et al. 201D
to a sum of more than two functions. As such, SDMM uses aug-
mented Lagrangian techniques and duality arguments irertgad
tion. In the following we highlight the main steps in the dation
of SDMM tailored to solve 9).

First, observe that the problem if))(can be reformulated as
in (10) in the following way:

mg}] fl(l_1w) + fQ(LQw) + fS(LSw)7 (12)
xe

whereL; = Vi € CP*N L, = ¢ € CM*N andL;
I € RYM*Y is the identity matrix. In this formulationf; (1)
||W7‘1||1 for 1 € (CD, f2(’r‘2) = iB(TQ) with B = {7‘2 S (CM :
ly — r2ll2 < €}, and fs(r3) = ic(r3) with ¢ = RY. This

(© 2013 RAS, MNRASDQO, 1-14

(13)

subjecttol;x = r;, fori =1,2,3.

The augmented Lagrangian associated wifh) {s the saddle func-
tion

L-y(myTl77‘27T37z17z27Z3) = (14)

3
1 1
D filr) + =zl (L — ) + o ||l — 73,
i=1 v 2

where~y > 0 is a so-called penalty parameter aad ¢ C”,

2z € CM andz; € CV are the dual variables or the Langrange
multipliers. SDMM is a primal dual algorithm that proceetkra-
tively by first minimizing £ with respect to the primal variables,
x, r1, T2, T3, and as second step, solving the dual problem

max J(z1, 22, 23 15
z1 ECP,zoeCM zgeCN ( ’ ’ )7 ( )
where
J(z1,22,23) = min Lo(x,71,72,73, 21,22, 23)

zeCN ,rech,
rocCM ryech
(16)
is the dual function. The main difference between SDMM and
other primal-dual algorithms is that the optimization wigspect
to the primal variables is done in an alternating fashion bst fi
minimizing £~ with respect taz and then with respect tey, 2,
r3. The algorithm is shown to converge to a minimizer D8)(
Convergence results of SDMM are based on convergence of the
alternating-direction method of multipliers and can benfdun
Boyd et al.(2010.
The minimizer of£,, with respect tac with fixed variables;,
z; is given by
> 1
= arg min ;zj(Liw —ri) + 5 llLiw — 3. (A7)

Observe that the above problem is the minimization of a catadr
function, which is convex and differentiable. Thereforecessary
and sufficient optimality conditions are
3
Vaoly (@)= [szi + LI (Liz" — m)] =0
=1

and the matrdQ = Y°7_, LIL; € CV*¥ should be invertible. For
our particular problen® = ®'® + W' + I, which is positive-
definite and invertible. Solvingl@) for ™ yields

(18)

3
' =Q ') Li(ri - z). (19)
=1
The minimization over; can be carried out for ail simulta-
neously since the problems are decoupled. Assuisdixed and
also assume that andz; are fixed. Then the minimizer &, with
respect tar; is
* . 1 1
ri = arg min fi(m)—&—;z;r(Liw—m)—i— 5|\L,~w—m|\§. (20)
After some algebraic manipulations and adding the tguﬁzi to
(20) we get

* . 1
v =arg min vfi(ri) + 5| — (Liz+ )3, (21)
r,eCN 2
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which is nothing but the proximity operator off; applied toL;x + whereprox,, | is the entrywise soft-thresholding operator defined
z;. Thus, the minimizer with respect 1 is computed as aSprOX)\H(a) — \GT\(|‘1| _ A)*, with (.)+ = max(0,-). The
) = prox,; (Liz + 2:). (22) proximity operator off2(r2) = ip(r2) is the projector onto the

L . . _convexsetB = {r; € C : ||y — 2|2 < ¢}, and is computed as
The maximization over the dual variables is performed using

a gradient ascend method. Again the optimization with retse prox, s, (rz) = min(1, ¢/||lr2||2)r2, (26)
z; can be carried out simult.aneously foradlince the problems are  which is independent of. The proximity operator of(r3) is the
decoupled. Thus, for a fixeithe problem becomes projector onto the positive orthant and is given by
z] = arg max J = argmax zl(Liz” —r]). (23) prox, s, (ra) = {(rs;) "}, ;o n s (27)
The gradient of7 with respect taz; is given byL;z* — ;. There- which is also independent af. SeeCombettes & Pesqué2011)
fore, the dual ascend method yields updates of the form and references therein for derivation of these results.
® (t-1) . . The bottleneck of Algorithnd, in terms of computational re-
z =z Lz -, (24) sources, is the inversion of the matx To invert this matrix we
for each iteration of the algorithm, whetedenotes the iteration ~ US€ the conjugate gradient algorith8a@d 200Bto solve the sys-
variable. temQ&® = 23 2", The conjugate gradient algorithm is

Note that the above described procedure can be easily ex-an iterative process that involves one matrix multiplieatby Q
tended forS functions, thus providing a flexible framework for ~ at each iteration. Given th&@ = ®'® + Ww + 1, in general,

incorporating additional prior information either in tha of con- each iteration requires one computation of the sensingatqred
vex constraints or as additional convex penalty functioftse ex- and its adjoint, and, one computation of the sparsity operaand
pressions in19), (22) and @4) constitutes the main iteration steps  its adjoint. If we restrict the algorithm to use Parsevahfes, i.e.
in our SDMM based solver, which is detailed in the next sectio W = I, the computation time can be considerably reduced since

nowQ = ®'® + 27. Examples of Parseval frames are orthogonal
bases and the concatenation of orthogonal bases used in SARA
4.4 Implementation details Another important consideration in Algorithnis the choice
of the penalty parameter. In theory anyy > 0 guarantees con-
vergence of the algorithm. However, in practice the cormeceg

until a stopping criteria is met. The algorithm is stoppethé rel- speed of the algorithm is severely affected by the value isffi-

ative variation between the objective function evaluatestieces- ~ '@Meter. As it can be observed from the augmented Lagrangian
sive solutions¢ = | f1(Li&®) — f1(Li@® D)/ f1(Liz D)), function (14), small values ofy place a large penalty on violations

is smaller than some bourgde (0, 1) and if the normalized resid- of prlmal feasibility, thus enforcing fast convergence knd_etdual
ualv = ||y — szu)HQ/e is within the interval[l — 7,1 + 7] for variablesz,;. Conversely, large values of place more weight on
some tolerance € (0,1), 7 < 1. In our implementation we fix the original functionsf;, thus achieving a faster convergence rate

The resulting algorithm is summarized in AlgorithhhwhereS =
3. The algorithm is run for a fixed number of iteratioff$,ax, or

€=10"%andr = 10", on the objective function. Before discussing how to set thee
of this parameter note that the proximity operatorsfofand fs,

Algorithm 1 SDMM (26) and @7), are independent of the value gfsince f> and f5
— ) ) : are indicator functions and the only effect-pin Algorithm 1is in

1: Initializey > 0, 2" andz; " = 0,i =1,..., 5. the proximity operator of;. Therefore; should scale withTz*,

2 r” =12, i=1,...,8. wherez* denotes the true signal. Sineé is unknown, we propose

3 m§°) = LITEO), i=1,...,8. to set the penalty parameter as= 3|V o'y, i.e. a constant

4: fort =1,...,Tmax dO times the peak value of the dirty image in the sparsity domain

5 &0 =Q 'Y &Y, our implementation we fi¥ = 1072,

6: foraﬂ!i:l,...,Sdo() )

. _ At —

T T P, (L m’L “ ) 45 Paralld and distributed optimization

8: z, =2z + Lzt — 7,

o: 98gt) _ Li(rz(t) _ th))- The SDMM structure offers several degrees of parallelirathat
100 end for can be further exploited. Firstly, the proximity operataes be
11:  if 29 meets halting criterighen implemented in parallel providing an acceleration factbthoee.
12: Break. Secondly, as can be seen frofb), (26) and @7), the computation
130 endif of the proximity operators is very simple and could suppdrigh
14: end for level of parallelization since it mostly involves simpletigmvise
15: return &® operations. Finally, in the case of large-scale data probje.e.

large number of visibilities\/ > N, the visibilities can no longer
be processed on a single computer but rather in a computgeciu
thus requiring a distributed processing of the data for thage
reconstruction task. In this distributed scenario the datzory
and the measurement operator can be partitionedRnitocks in
the following manner:

In the following we detail the computation of the proximity
operators used in Algorithm. To compute the proximity oper-
ator of f1, let us first define it entrywise as followsf (r1) =
[[Wril1 = Zle wj|r,;], wherew; = W;; (sinceW is a diago-
nal positive matrix) and- | denotes the norm of a complex number.

Sincef; can be split as the sum of independent components ,of Y1 R
the proximity operator ofy f1(r1) is given by y=|:| andd = 7 (28)
prox, r, (r1) = Sy(r1) = {prox,, | (r1 ;) h<j<n,  (25) YR Pr

© 2013 RAS, MNRASO00, 1-14



wherey; € CMi, &; € CM*N andM = S | M;. Eachy; is
modelled agy; = ®;x + n;, wheren; ¢ C*: denotes the noise
vector.

With this partition the optimization problem irB) can be
rewritten as

min [[WW'&|; subject toy; — ®iz|l2 < eiyi=1,..., R,
a‘ceR+

(29)
where each; is an appropriate bound for tife norm of the noise
termn;. Observe that{9) can be solved by SDMM (Algorithri)
if we reformulate the problem as

min fi(Liz) + ...+ fs(Lsx), (30)
xzeCN

with S = R + 2. In this formulationfi and f, denote the/;
sparsity term and the positivity constraint respectivalyd f5 to
fs denote theR data fidelity constraints. Thus, = VT, Ly = |
andL;y2 = ®; fori = 1,...,S. Note that steps 7 to 9 in Algo-
rithm 1 can be computed in parallel for eathThe advantages of
this distributed optimization approach are: (i) the viliigis y; and
the measurement operatabs are local to each node in the cluster,
therefore the memory requirements are distributed anfongdes,
with a data dimensionalitp/; < M; (ii) the measurement oper-

ators®;, and their adjoint, are applied locally at each node thus

distributing the processing load, for acceleration of #eonstruc-
tion process; (iii) the central processing node, where tlobal
updatei® = Q'3°%  x!""" is computed, and the parallel
nodes, where the local updat:eét_l) are computed, only need to
exchange information of the size of the image vector at etch i
eration rather than of the size of the visibilities, thusewthting
the communication requirements to transfer informatiotwben
nodes. Note that the composite operabde, needed in the conju-
gate gradient solver for the global update, can be applipdiallel
by each node sincé’® = Zf':l dﬁd)i. Although this approach
would distribute the processing load of the conjugate grditep
into the parallel nodes, it would incur in a communicatioeihead
since each parallel node needs to communicate its reswudthtie
eration of the conjugate gradient algorithm. One approhahdan
be used to avoid this situation is to precompute and storedfre

posite operato®’ ® in the central processing node. The aforemen-

tioned distributed optimization approach could be veryembipg

for next-generation telescopes where massive amountstafda
acquired. These distributed optimization ideas are notdmpnted
in the beta version of PURIFY, discussed in Sectipand are the
subject of ongoing work.

5 THE PURIFY PACKAGE

PURIFY* is a collection routines written in C that implements dif-
ferent tools for Rl imaging including file handling (for botfsibil-
ities and fits images), implementation of the measuremesriadpr
and set-up of the different optimization problems used foage
deconvolution. The code calls the generic Sparse OPTimizat

(SOPT) package, which is also written in C, to solve the imaging

optimization problems. In the following we describe theatiént

features included in PURIFY and SOPT. Note that the name PU-

RIFY has no other meaning than that of a powerful alterndtive
CLEAN.

4 The package availablelat t p: / / basp- gr oup. gi t hub. i o/ puri fy/.

5 The package availablelat t p: / / basp- group. gi t hub. i o/ sopt /.
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The optimization problems solved by SOPT within the
SDMM structure are: (i) the weighte€i minimization problem
in (9) and (ii) the weighted TV minimization problem similar to
(6) but with the TV norm replaced by a by a weighted TV norm
defined ag|Z|wrv = [[WVZ|1 whereW is a matrix with pos-
itive weights applied to the image gradient. The non-reeid
problems can be solved just by setting the weight matrix ® th
identity matrix. In the case of the reweighted TV probl¢niz) =
||Z||wrv, with the proximity operator computed using the fast first
order iterative method described Beck & Teboulle(20093. For
the /1 problems a set of different dictionaries is supported,udel
ing: the Dirac basis, the Daubechies wavelets family ancttime
catenation of any of these bases.

For the measurement operator, PURIFY implements a non-
uniform FFT that maps a discrete image into continuous Visés
(Greengard & Lee 2004 The operator is defined as

® = GFDZB. (31)

The matrixB € RV*¥ is the diagonal matrix implementing the
primary beam. The operatdre R *V denotes the zero padding
operator withN’ = kN andk > 2 needed to compute the dis-
crete Fourier transform aof on an oversampled grid and achieve
higher accuracy. The unitary matrfx € CcN'*N" denotes the
discrete Fourier transform. The mati& € R >N represents
a convolutional interpolation operator to model the maprfra
discrete frequency grid onto the continuous plane so tleaEfT
can be used to implemet PURIFY supports a Gaussian ker-
nel in the frequency domain with a compact support, but stppo
for other convolutional interpolation kernels can eas#yiticluded.
Due to the kernel’'s compact support, the magiis highly sparse
therefore allowing fast matrix-vector multiplicationsh& operator
DeRV*Nisa diagonal matrix that in practice implements a
discrete version of the reciprocal of the inverse Fouriengform
of the interpolation kernel, i.ed = 1/3, whereg denotes the in-
verse Fourier transform of the continuous interpolatiom&ke The
idea behind this procedure is to undo the effects of the datieo

by the interpolation kernel in the frequency domain by divigby
the inverse Fourier transform of the interpolation kernethie spa-
tial domain. This operator and its adjoint are implementethe
package. Although the current version of PURIFY only sufppor
the Gaussian kernel, other interpolation kernels, suchralatp
spheroidal wave functionsTiompson et al. 20Q1 will be incor-
porated in future versions.

Also note that our framework can easily incorporate DDEs, in
particular thew-component effect, as additional convolution ker-
nels in the frequency plane entering the maGixAgain, compact
support of those kernels will ensure sparsityGfin turn ensuring
its necessary fast implementation. This represents amatiee to
thew-projection and thé\-projection algorithmsBhatnagar et al.
2008ha). SeeWolz et al.(2013 for first steps in these directions.

Careful attention has been paid to the design of the inter-
faces of PURIFY. The solvers receive the measurement apsrat
as pointers to functions implementing the forward and adjop-
erators with a generic signature, thus other measuremeets-0
tors can easily be used. Weighting matrices, such as conaplex
tenna gains and natural or uniform weighting matrices, ateup-
ported in the current implementation but their incorpanatinto
the measurement operator is straightforward. The samesamhy
is adopted for the sparsity operators allowing the incapon of
any sparsity dictionary. These interfaces will facilitdieect inte-
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gration with standard packages for interferometric imggiach as
CASAS,

The current version of SOPT does not exploit the parallel
structure of SDMM. Firstly, the proximity operators are iep
mented in a serial manner rather than in parallel. Secortiogy,
computation of each proximity operators is implementedatigr
rather than in parallel thus not exploiting its separabtacstire.
The only parallel structure that is exploited is the impletatgion
of the sparsity averaging operator in SARA, i.e. each deasinp
tion on the basis in the operator are computed in paralledrdfore
the highly redundant dictionary in SARA has an implementats
fast as a single orthonormal basis, which already represesig-
nificant advantage. As discussed in Sectiof) the computation of
the measurement operatbris a major bottleneck for very high di-
mensional problems. In this case the measurement opa&batan
be parallelized by implementing a parallel matrix-vectoodquct
for the sparse matrig, e.g. partitioningG into several blockss;
as done inZ8) for ®. Similar strategies might be adopted for the
sparsity operatow. As discussed in Sectioh4 the global update
#® = Q' 27 | 2"~V is the main bottleneck of the algorithm.

We use as reconstruction quality metric the signal to naise r
tio (SNR), which is defined as:

wherex andz denote the the original image and the estimated im-
age respectively. The visibilities are corrupted by comgiaus-
sian noise with a fixed input SNR set to 30 dB. The input SNR is
defined adSNR = 20log,([lyoll2/|In]l2), whereyo identifies
the clean measurement vector. Assuming visibilities qued by
i.i.d. complex Gaussian noise with variangg, the bound on the
£5 norm term in @), e, is identical to a bound on g distribu-
tion with 2 degrees of freedom. Therefore, we set this bound as
€ = (2M + 4v/M)o? /2, whereo? /2 is the variance of both the
real and imaginary parts of the noise. This choice providésly
bound for||n||2 (Carrillo et al. 2012 We use the measurement
operator described irB() with B = | and an oversampling factor
k=2.

The first experiment in this section considers incomplese vi
ibility coverages generated by random variable densitypliagn

]2

2 — 2l

SNR = 201log,,, < (32)

One approach that could be implemented here is to precomputeprofiles. Such profiles are characterized by denser samalitogy

and store the sparse mati® G = Zf‘zl GZTGi to accelerate the
conjugate gradient solver These optimizations are the subject of
ongoing work.

6 SIMULATIONSAND RESULTS

In this section we illustrate the performance of the imagifgp-
rithms implemented in PURIFY by recovering well known test i
ages from simulated continuous frequency visibilitiese Tést im-
ages used in all simulations are M31, based on a HIl regiohén t
M31lgalaxy, and 30Dor, the 30 Doradus in the Large Magellanic
Cloud. These images present different compact and extestded
tures thus being good candidates to evaluate differentaggation
priors. Figurel shows the 258256 discrete models of M31 (left)
and 30Dor (middle) used as ground truth imdges

For our evaluation we compare constrairfedand TV mini-
mization problems, as well as their reweighted versiongeims
of reconstruction quality and computation time. For theprob-
lems we study three different dictionari¢'sin (9): the Dirac basis,
the Daubechies 8 wavelet basis and the Dirac-Db1-Db8 cenaat
tion highlited for the SARA algorithm in SectioB.3. The asso-
ciated algorithms are respectively denoted BP, BPDb8 arfdABP
for the non-reweighted case. The reweighted versions apece
tively denoted RWBP, RWBPDb8 and SARA. We also study the
TV minimization problem in §) with the additional constraint that
T € Rﬁ, denoted as TV, and its reweighted version, denoted as
RWTV. Recall tha?; minimization with a Dirac basis yields recon-
struction qualities similar to CLEAN, thus we use BP as a pifox
CLEAN. Also, we use BPDb8 as a proxy for MS-CLEAN recon-
struction quality sincéi et al. (2011 reported that the isotropic un-
decimated wavelet transform outperformed MS-CLEAN &a-
rillo et al. (2012 reported that BPDb8 outperformed the isotropic
undecimated wavelet transform in the discrete setting.

6 http://casa.nrao. edu/.

7 Note thatSullivan et al.(2012 also proposed to precompuf G to ac-
celerate a CLEAN-based algorithm.

8 Available atht t p: / / casagui des. nrao. edu/ i ndex. php.

spatial frequencies than at high frequencies. This choiceica
common generic sampling patterns in radio interferomdtmyor-
der to make the simulated coverages more realistic we sspfine
(0,0) component of the Fourier plane from the measured visibil-
ities. This generic profile approach allows us to make a tingio
study of the reconstruction quality of the imaging algarithwith

a large numbers of simulations for arbitrary number of viiies
and without concern for various telescope configurations.vevy
the number of visibilities fromM = 0.2N to M = 2N. Re-
construction results for M31 and 30Dor are reported in tipeatad
bottom rows of Figur@ respectively. Average values over 30 simu-
lations and associated one standard deviation error barsported
for all plots.

The left panel of Figur& shows SNR results for M31 (top)
and 30Dor (bottom). The results show that SARA outperforths a
other methods in reconstruction quality for both imageds Thn-
firms previous results reported IBarrillo et al.(2012) in the dis-
crete case now for the more realistic continuous Fouri¢inggin-
cluding the case wheh/ > N. Interestingly, BPSA shows the best
reconstruction quality over all non-reweighted methods tfoth
images. The results for M31, which exhibits a compact suppor
with some extended structures, show that the second bekbdet
is RWBPDb8 having SNRs at most 4 dB below SARA. The results
for 30Dor, which is a more complicated image with both extghd
structures and compact structures, show that TV and RWTar aff
good model for continuous extended structures achievingsSat
most 2 dB below SARA. Note that BP and its reweighted version
do not achieve good results for this image, as expected $irece
Dirac basis is not a good model for extended structuresgesgicty
SNRs at least 4 dB below all other methods for coverages above
M =0.2N.

Computation times, on a 2.4 GHz Xeon quad core and us-
ing the current non-optimized software version, are regubinh the
right panel of Figure for M31 (top) and 30Dor (bottom). As ex-
pected the reweighted methods are most costly having reacns
tion times ranging from tens of minutes féf = 0.2N to one
hour for M = 2N. Even though the concatenation of bases in
SARA makes the algorithm structure more costly in theorg th
parallel implementation of the bases in SARA yields a coinpet
tive algorithm in terms of computation time. In fact, the uks
show that RWBPDb8, with a single wavelet basis, is the slowes

© 2013 RAS, MNRASO0O, 1-14
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Figure 1. Left and middle panels: original 256256 test images, M31 (left) and 30Dor (middle), shown Ing,, scale with brightness values in the interval
[0.01, 1]. Right panel: Example of a simulated variable density cagerin the Fourier plane\{ = 26374 =~ 0.4N).
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Figure 2. Reconstruction results for M31 (top row) and 30Dor (bottamw) 256x 256 test images. Left column: average reconstruction SN&nag
normalized number of visibilitied//N. Right column: average computation time. Vertical barsiifie one standard deviation errors around the mean over
30 simulations. The input SNR is set to 30 dB. The results shaivSARA outperforms all other methods in terms of recarmsion quality for both images.

method and the most unstable with respect to convergeneeast
can be observed from the large error bars. This result itelica
that RWBPDb8 might need more iterations to achieve convege
than other methods. RWTYV reports similar reconstructiores to

SARA. The results also show that the non-reweighted methoels

(© 2013 RAS, MNRASDQO, 1-14

fast, achieving reconstruction times below 10 minutes flaraver-
ages, except for TV in 30Dor which has a similar behaviouihas t
reweighted methods. An interesting observation is thate¢aen-
struction times scale linearly with the number of visili@ for the
reweighted methods. This is due to the fact that the comylexi
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the SDMM algorithm is dominated by the cost of solving theén
system at step 5 of Algorithr, which needs to apply the sens-
ing operator® and its adjoint at every iteration of the conjugate
gradient algorithm. Therefore beyond having a fast impletae
tion of ®, alternative strategies to accelerate the solution ofithe |
ear system should be explored such as the use of precormdition
conjugate gradient solvers and faster implementationseo@&ram
matrix d1 .

fact that the new algorithmic structure offers a promisiaghpto
handle large-scale problems.

In future work we will extend the current PURIFY implemen-
tation to take full advantage of the parallel and distribuséruc-
ture of SDMM as discussed in Sectidrb. We expect that paral-
lel and hardware implementations of the measurement amdigpa
operators as well as the proximity operators could achiesstid
accelerations of the algorithms. Also, different stragegivill be

Next we present a visual assessment of the reconstructionexplored to accelerate the convergence of the conjugatiiegita

quality of the different algorithms. Figurg and Figure4 show
the results from M31 and 30Dor respectively foua coverage
of M = 26374 = 0.4N visibilities. The results are shown
from top to bottom for SARA, RWBPDb8, RWTV and RWBP re-
spectively. The first column shows the reconstructed images

solver, e.g. using preconditioners for the oper&oand precom-
puting the sparse matrig' G to avoid multiplications byG andG'
separately, which involve an intermediate high dimendiaea-
tor of lengthAM > N, at each iteration of the conjugate gradient
solver. Finally, DDEs will be incorporated into PURIFY. Rdic

log,, scale, the second column shows the error images, defined aghat DDEs can easily be included in the mat@xs additional con-

x — &, in linear scale, and, the third column shows the real part of
the residual dirty images, defined as the difference betwigén
images and dirty images constructed from recovered images,
r = dTy — dTd@, also in linear scale. These images confirm the
previous results found by examining recovered SNR levedR /S
yields reconstructed images with fewer artifacts in thekgemund
regions and smaller errors in the structured inner regibas the
other methods. Interestingly RWBPDb8 yields a nearly flaide
ual map for 30Dor. However, this does not necessarily tea@shto
a better reconstruction quality as can be observed in tloe iEn-
age. This phenomenon can also be seen in the reconstrucigd im
by RWTV of 30Dor, which shows a small error image compared
to RWBPDb8 but showing a residual map with a lot of structures
This highlights the fact that the common criterion of flaged
residual image is not an optimal measure of reconstructasiity
as emphasized in our previous wotkafrillo et al. 2012

The last experiment presents an illustration with a raalist
dio telescope coverage. We use a simulation of the Arcmillite
crokelvin Imager (AMI) gwart et al. 2008 array to obtain ai-v
coverage with\/ = 9413 points. For this experiment we use a low
resolution 12& 128 version of M31. The top row in FiguBsshows
the original test image iog,, scale, theu-v coverage and the
corresponding dirty image in linear scale. The SNR of thevec
ered image for each algorithm is as follows: BP (10.7dB), RRVB
(SNR=10.9 dB), BPDb8 (11.6 dB), RWBPDb8 (SNR=12.3 dB),
TV (10.6 dB), RWTV (10.5 dB), BPSA (12.4 dB) SARA (14.3 dB).
The second and third rows in Figuseshow the reconstructed im-
ages along with the corresponding error and residual dinggies
images for SARA, RWBPDb8 and RWBP. SARA provides not only
a SNR increase but also a significant reduction of visualaats
relative to all other methods.

7 CONCLUDING REMARKS

In this paper we have proposed an algorithmic frameworkdase
the simultaneous-direction method of multipliers to sabparse
imaging problems in Rl imaging. The new algorithm provides a
parallel implementation structure, therefore offeringadtnactive
framework to handle continuous visibilities and assodatéh
dimensional problems. A variety of state-of-the-art sipan®eg-
ularization priors, including our recent average sparafiproach
SARA, as well as discrete and continuous measurement opgrat
are available in the new PURIFY software. Source code for PU-
RIFY is publicly available. Experimental results confirntibohe
superiority of SARA for continuous Fourier measurements the

volution kernels in the frequency plane. Compact supparmeds
will ensure sparsity of and a fast matrix-vector multiplication. In-
tegration with standard packages for interferometric iimggsuch
as CASA, will allow to take advantage of their built-in readtd
handling and also to have a full comparison with standard-alg
rithms such as MS-CLEAN and ASP-CLEAN.
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Figure 3. Reconstruction example of M31 (25@56) for au-v coverage withM = 0.4N sampling frequencies. The results are shown from top to
bottom for SARA (SNR=32.4 dB), RWBPDb8 (SNR=30.6 dB), RWTSN\R=28.6 dB) and RWBP (SNR=23.4 dB) respectively. The fiofirmn shows the
reconstructed images inlag,, scale, the second column shows the error images in linels, scal the third column shows the residual dirty images ialso
linear scale.
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Figure 4. Reconstruction example of 30dor (26856) for au-v coverage withM = 0.4N sampling frequencies. The results are shown from top to
bottom for SARA (SNR=25.3 dB), RWBPDb8 (SNR=22.6 dB), RWTSN\R=24.1 dB) and RWBP (SNR=18.8 dB) respectively. The fioiiran shows the
reconstructed images inlag,, scale, the second column shows the error images in linels, scal the third column shows the residual dirty images ialso
linear scale.
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Figure 5. AMI coverage example. First row from left to right: originkl31 128x128 test image irflog;, scale,u-v coverage in normalized angular
frequency units{/ = 9413) and corresponding dirty image in linear scale. Secondstatavs: reconstruction results for SARA (SNR=14.3 dB), RWIH8
(SNR=12.3 dB) and RWBP (SNR=10.9 dB). The first column shdweséconstructed images ifl@g,, scale, the second column shows the error images in
linear scale, and the third column shows the residual dingges also in linear scale.
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