1,075 research outputs found

    Mott Transition and Spin Structures of Spin-1 Bosons in Two-Dimensional Optical Lattice at Unit Filling

    Full text link
    We study the ground state properties of spin-1 bosons in a two-dimensional optical lattice, by applying a variational Monte Carlo method to the S=1 Bose-Hubbard model on a square lattice at unit filling. A doublon-holon binding factor introduced in the trial state provides a noticeable improvement in the variational energy over the conventional Gutzwiller wave function and allows us to deal effectively with the inter-site correlations of particle densities and spins. We systematically show how spin-dependent interactions modify the superfluid-Mott insulator transitions in the S=1 Bose-Hubbard model due to the interplay between the density and spin fluctuations of bosons. Furthermore, regarding the magnetic phases in the Mott region, the calculated spin structure factor elucidates the emergence of nematic and ferromagnetic spin orders for antiferromagnetic (U2>0U_2>0) and ferromagnetic (U2<0U_2<0) couplings, respectively.Comment: 5 pages, 5 figures, to appear in Journal of the Physical Society of Japa

    Effects of Long-Range Correlations on Nonmagnetic Mott Transitions in Hubbard model on Square Lattice

    Full text link
    The mechanism of Mott transition in the Hubbard model on the square lattice is studied without explicit introduction of magnetic and superconducting correlations, using a variational Monte Carlo method. In the trial wave functions, we consider various types of binding factors between a doubly-occupied site (doublon, D) and an empty site (holon, H), like a long-range type as well as a conventional nearest-neighbor type, and add independent long-range D-D (H-H) factors. It is found that a wide choice of D-H binding factor leads to Mott transitions at critical values near the band width. We renew the D-H binding picture of Mott transitions by introducing two characteristic length scales, the D-H binding length l_{DH} and the minimum D-D distance l_{DD}, which we appropriately estimate. A Mott transition takes place at l_{DH}=l_{DD}. In the metallic regime (l_{DH}>l_{DD}), the domains of D-H pairs overlap with one another, thereby doublons and holons can move independently by exchanging the partners one after another. In contrast, the D-D factors give only a minor contribution to the Mott transition.Comment: 13 pages, 18 figures, submitted to J. Phys. Soc. Jp

    Effect of Doublon-Holon Binding on Mott transition---Variational Monte Carlo Study of Two-Dimensional Bose Hubbard Models

    Full text link
    To understand the mechanism of Mott transitions in case of no magnetic influence, superfluid-insulator (Mott) transitions in the S=0 Bose Hubbard model at unit filling are studied on the square and triangular lattices, using a variational Monte Carlo method. In trial many-body wave functions, we introduce various types of attractive correlation factors between a doubly-occupied site (doublon, D) and an empty site (holon, H), which play a central role for Mott transitions, in addition to the onsite repulsive (Gutzwiller) factor. By optimizing distance-dependent parameters, we study various properties of this type of wave functions. With a hint from the Mott transition arising in a completely D-H bound state, we propose an improved picture of Mott transitions, by introducing two characteristic length scales, the D-H binding length ξdh\xi_{\rm dh} and the minimum D-D exclusion length ξdd\xi_{\rm dd}. Generally, a Mott transition occurs when ξdh\xi_{\rm dh} becomes comparable to ξdd\xi_{\rm dd}. In the conductive (superfluid) state, domains of D-H pairs overlap with each other (ξdh>ξdd\xi_{\rm dh}>\xi_{\rm dd}); thereby D and H can propagate independently as density carriers by successively exchanging the partners. In contrast, intersite repulsive Jastrow (D-D and H-H) factors have little importance for the Mott transition.Comment: 16 pages, 22 figures, submitted to J. Phys. Soc. Jp

    The early experience of smart specialization implementation in EU cohesion policy

    Get PDF
    This paper discusses the early-stage experience of the smart specialization agenda within EU Cohesion Policy. The analysis examines the types of policy prioritization choices made by different member states and regions and seeks evidence on the extent to which weaker regions, in particular, might be constrained in their choices. The paper then reviews the evidence arising out of various surveys of policy-makers’ own experience and perceptions of the agenda, and concludes with a discussion of the major features of the policy progress so far and the main challenges ahead

    Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems

    Full text link
    Recent trends of ab initio studies and progress in methodologies for electronic structure calculations of strongly correlated electron systems are discussed. The interest for developing efficient methods is motivated by recent discoveries and characterizations of strongly correlated electron materials and by requirements for understanding mechanisms of intriguing phenomena beyond a single-particle picture. A three-stage scheme is developed as renormalized multi-scale solvers (RMS) utilizing the hierarchical electronic structure in the energy space. It provides us with an ab initio downfolding of the global band structure into low-energy effective models followed by low-energy solvers for the models. The RMS method is illustrated with examples of several materials. In particular, we overview cases such as dynamics of semiconductors, transition metals and its compounds including iron-based superconductors and perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an invited review pape

    Mott Transitions and d-wave Superconductivity in Half-Filled-Band Hubbard Model on Square Lattice with Geometric Frustration

    Full text link
    Mechanisms of Mott transitions and dx2-y2-wave superconductivity (SC) are studied in the half-filled-band Hubbard model on square lattices with a diagonal hopping term (t'), using an optimization (or correlated) variational Monte Carlo method. In the trial wave functions, a doublon-holon binding effect is introduced in addition to the onsite Gutzwiller projection. We mainly treat a d-wave singlet state and a projected Fermi sea. In both wave functions, first-order Mott transitions without direct relevance to magnetic orders take place at U=Uc approximately of the bandwidth for arbitrary t'/t. These transitions originate in the binding or unbinding of a doublon to a holon. d-wave SC appears in a narrow range immediately below Uc. The robust d-wave superconducting correlation are necessarily accompanied by enhanced antiferromagnetic correlation; the strength of SC becomes weak, as t'/t increases.Comment: 18 pages, 30 figure

    New trajectories of the Hungarian regional development: balanced and rush growth of territorial capital

    Get PDF
    The basic assumption of the paper is that numerous similarities exist between the patterns of economic growth and territorial capital growth. The rush economic growth and rush growth of territorial capital are compared empirically at Hungarian micro-regional level from 2004 until 2010. After normalizing the dataset, a very novel spatial econometric method is applied, called a penalty for bottleneck. The results show that the constant rush growth of territorial capital is as harmful as economic recession. On the other hand, the decrease of infrastructural and social capital caused the rush growth of territorial capital in this period. Moreover, the key findings of two case studies suggest that the balanced growth of territorial capital will be created by the falling social inequalities and increasing infrastructural capita
    corecore