4,948 research outputs found
A general interpolation scheme for thermal fluctuations in superconductors
We present a general interpolation theory for the phenomenological effects of
thermal fluctuations in superconductors. Fluctuations are described by a simple
gauge invariant extension of the gaussian effective potential for the
Ginzburg-Landau static model. The approach is shown to be a genuine variational
method, and to be stationary for infinitesimal gauge variations around the
Landau gauge. Correlation and penetration lengths are shown to depart from the
mean field behaviour in a more or less wide range of temperature below the
critical regime, depending on the class of material considered. The method is
quite general and yields a very good interpolation of the experimental data for
very different materials.Comment: some misprints have been corrected in Eq.(15),(19); more references
and comments have been adde
Symmetry without Symmetry: Numerical Simulation of Axisymmetric Systems using Cartesian Grids
We present a new technique for the numerical simulation of axisymmetric
systems. This technique avoids the coordinate singularities which often arise
when cylindrical or polar-spherical coordinate finite difference grids are
used, particularly in simulating tensor partial differential equations like
those of 3+1 numerical relativity. For a system axisymmetric about the z axis,
the basic idea is to use a 3-dimensional Cartesian (x,y,z) coordinate grid
which covers (say) the y=0 plane, but is only one
finite-difference-molecule--width thick in the y direction. The field variables
in the central y=0 grid plane can be updated using normal (x,y,z)--coordinate
finite differencing, while those in the y \neq 0 grid planes can be computed
from those in the central plane by using the axisymmetry assumption and
interpolation. We demonstrate the effectiveness of the approach on a set of
fully nonlinear test computations in 3+1 numerical general relativity,
involving both black holes and collapsing gravitational waves.Comment: 17 pages, 4 figure
Self-Advancing Step-Tap Drills
Self-advancing tool bits that are hybrids of drills and stepped taps make it possible to form threaded holes wider than about 1/2 in. (about 13 mm) without applying any more axial force than is necessary for forming narrower pilot holes. These self-advancing stepped-tap drills were invented for use by space-suited astronauts performing repairs on reinforced carbon/carbon space-shuttle leading edges during space walks, in which the ability to apply axial drilling forces is severely limited. Self-advancing stepped-tap drills could also be used on Earth for making wide holes without applying large axial forces. A self-advancing stepped-tap drill (see figure) includes several sections having progressively larger diameters, typically in increments between 0.030 and 0.060 in. (between about 0.8 and about 1.5 mm). The tip section, which is the narrowest, is a pilot drill bit that typically has a diameter between 1/8 and 3/16 in. (between about 3.2 and about 4.8 mm). The length of the pilot-drill section is chosen, according to the thickness of the object to be drilled and tapped, so that the pilot hole is completed before engagement of the first tap section. Provided that the cutting-edge geometry of the drill bit is optimized for the material to be drilled, only a relatively small axial force [typically of the order of a few pounds (of the order of 10 newtons)] must be applied during drilling of the pilot hole. Once the first tap section engages the pilot hole, it is no longer necessary for the drill operator to apply axial force: the thread engagement between the tap and the workpiece provides the axial force to advance the tool bit. Like the pilot-drill section, each tap section must be long enough to complete its hole before engagement of the next, slightly wider tap section. The precise values of the increments in diameter, the thread pitch, the rake angle of the tap cutting edge, and other geometric parameters of the tap sections must be chosen, in consideration of the workpiece material and thickness, to prevent stripping of threads during the drilling/tapping operation. A stop-lip or shoulder at the shank end of the widest tap section prevents further passage of the tool bit through the hole
Dynamical Bar-Mode Instability in Differentially Rotating Magnetized Neutron Stars
This paper presents a numerical study over a wide parameter space of the
likelihood of the dynamical bar-mode instability in differentially rotating
magnetized neutron stars. The innovative aspect of this study is the
incorporation of magnetic fields in such a context, which have thus far been
neglected in the purely hydrodynamical simulations available in the literature.
The investigation uses the Cosmos++ code which allows us to perform three
dimensional simulations on a cylindrical grid at high resolution. A sample of
Newtonian magneto-hydrodynamical simulations starting from a set of models
previously analyzed by other authors without magnetic fields has been
performed, providing estimates of the effects of magnetic fields on the
dynamical bar-mode deformation of rotating neutron stars. Overall, our results
suggest that the effect of magnetic fields are not likely to be very
significant in realistic configurations. Only in the most extreme cases are the
magnetic fields able to suppress growth of the bar mode.Comment: 12 pages, 16 figures. References added and minor edits made to match
published versio
Self-advancing step-tap tool
Methods and tool for simultaneously forming a bore in a work piece and forming a series of threads in said bore. In an embodiment, the tool has a predetermined axial length, a proximal end, and a distal end, said tool comprising: a shank located at said proximal end; a pilot drill portion located at said distal end; and a mill portion intermediately disposed between said shank and said pilot drill portion. The mill portion is comprised of at least two drill-tap sections of predetermined axial lengths and at least one transition section of predetermined axial length, wherein each of said at least one transition section is sandwiched between a distinct set of two of said at least two drill-tap sections. The at least two drill-tap sections are formed of one or more drill-tap cutting teeth spirally increasing along said at least two drill-tap sections, wherein said tool is self-advanced in said work piece along said formed threads, and wherein said tool simultaneously forms said bore and said series of threads along a substantially similar longitudinal axis
Three Dimensional Distorted Black Holes
We present three-dimensional, {\it non-axisymmetric} distorted black hole
initial data which generalizes the axisymmetric, distorted, non-rotating
[Bernstein93a] and rotating [Brandt94a] single black hole data developed by
Bernstein, Brandt, and Seidel. These initial data should be useful for studying
the dynamics of fully 3D, distorted black holes, such as those created by the
spiraling coalescence of two black holes. We describe the mathematical
construction of several families of such data sets, and show how to construct
numerical solutions. We survey quantities associated with the numerically
constructed solutions, such as ADM masses, apparent horizons, measurements of
the horizon distortion, and the maximum possible radiation loss ().Comment: 23 pages, 12 figures, accepted for publication in Classical and
Quantum Gravit
Efficacy of a novel neem oil formulation (RP03™) to control the poultry red mite Dermanyssus gallinae
Dermanyssus gallinae (Mesostigmata: Dermanyssidae) is the most harmful ectoparasite of laying hens, represents an occupational hazard for poultry workers, and a growing threat to medical science per se. There is increasing demand for alternative products, including plant-derived acaricides, with which to control the mite. The present study investigated the efficacy of neem oil against D. gallinae on a heavily infested commercial laying hen farm. A novel formulation of 20% neem oil, diluted from a 2400-p.p.m. azadirachtin-concentrated stock (RP03â ¢), was administered by nebulization three times in 1week. Using corrugated cardboard traps, mite density was monitored before, during and after treatment and results were statistically analysed. Mite populations in the treated block showed 94.65%, 99.64% and 99.80% reductions after the first, second and third product administrations, respectively. The rate of reduction of the mite population was significantly higher in the treated block (P<0.001) compared with the control and buffer blocks. The results suggest the strong bioactivity of neem, and specifically of the patented neem-based formulation RP03â ¢, against D. gallinae. The treatment was most effective in the 10days following the first application and its effects persisted for over 2months. Further studies will aim to overcome observed side effects of treatment represented by an oily layer on equipment and eggs
On the Shear Instability in Relativistic Neutron Stars
We present new results on instabilities in rapidly and differentially
rotating neutron stars. We model the stars in full general relativity and
describe the stellar matter adopting a cold realistic equation of state based
on the unified SLy prescription. We provide evidence that rapidly and
differentially rotating stars that are below the expected threshold for the
dynamical bar-mode instability, beta_c = T/|W| ~ 0.25, do nevertheless develop
a shear instability on a dynamical timescale and for a wide range of values of
beta. This class of instability, which has so far been found only for small
values of beta and with very small growth rates, is therefore more generic than
previously found and potentially more effective in producing strong sources of
gravitational waves. Overall, our findings support the phenomenological
predictions made by Watts, Andersson and Jones on the nature of the low-T/|W|.Comment: 20 pages; accepted to the Classical and Quantum Gravity special issue
for MICRA200
Statistics of electromagnetic transitions as a signature of chaos in many-electron atoms
Using a configuration interaction approach we study statistics of the dipole
matrix elements (E1 amplitudes) between the 14 lower odd states with J=4 and
21st to 100th even states with J=4 in the Ce atom (1120 lines). We show that
the distribution of the matrix elements is close to Gaussian, although the
width of the Gaussian distribution, i.e. the root-mean-square matrix element,
changes with the excitation energy. The corresponding line strengths are
distributed according to the Porter-Thomas law which describes statistics of
transition strengths between chaotic states in compound nuclei. We also show
how to use a statistical theory to calculate mean squared values of the matrix
elements or transition amplitudes between chaotic many-body states. We draw
some support for our conclusions from the analysis of the 228 experimental line
strengths in Ce [J. Opt. Soc. Am. v. 8, p. 1545 (1991)], although direct
comparison with the calculations is impeded by incompleteness of the
experimental data. Nevertheless, the statistics observed evidence that highly
excited many-electron states in atoms are indeed chaotic.Comment: 16 pages, REVTEX, 4 PostScript figures (submitted to Phys Rev A
- …
