398 research outputs found
Dynamic correlations of the Coulomb Luttinger liquid
The dynamic density response function, form-factor, and spectral function of
a Luttinger liquid with Coulomb electron-electron interaction are studied with
the emphasis on the short-range electron correlations. The Coulomb interaction
changes dramatically the density response function as compared to the case of
the short-ranged interaction. The form of the density response function is
smoothing with time, and the oscillatory structure appears. However, the
spectral functions remain qualitatively the same. The dynamic form-factor
contains the -peak in the long-wave region, corresponding to one-boson
excitations. Besides, the multi-boson-excitations band exists in the
wave-number region near to . The dynamic form-factor diverges at the
edges of this band, while the dielectric function goes to zero there, which
indicates the appearance of a soft mode. We develop a method to analyze the
asymptotics of the spectral functions near to the edges of the
multi-boson-excitations band.Comment: 11 pages, 3 figures, submitted to PR
Singular Structure and Enhanced Friedel Oscillations in the Two-Dimensional Electron Gas
We calculate the leading order corrections (in ) to the static
polarization , with dynamically screened interactions, for the
two-dimensional electron gas. The corresponding diagrams all exhibit singular
logarithmic behavior in their derivatives at and provide significant
enhancement to the proper polarization particularly at low densities. At a
density of , the contribution from the leading order {\em fluctuational}
diagrams exceeds both the zeroth order (Lindhard) response and the self-energy
and exchange contributions. We comment on the importance of these diagrams in
two-dimensions and make comparisons to an equivalent three-dimensional electron
gas; we also consider the impact these finding have on computed
to all orders in perturbation theory
Experimental application of sum rules for electron energy loss magnetic chiral dichroism
We present a derivation of the orbital and spin sum rules for magnetic
circular dichroic spectra measured by electron energy loss spectroscopy in a
transmission electron microscope. These sum rules are obtained from the
differential cross section calculated for symmetric positions in the
diffraction pattern. Orbital and spin magnetic moments are expressed explicitly
in terms of experimental spectra and dynamical diffraction coefficients. We
estimate the ratio of spin to orbital magnetic moments and discuss first
experimental results for the Fe L_{2,3} edge.Comment: 11 pages, 2 figure
Restricted and unrestricted Hartree-Fock calculations of conductance for a quantum point contact
Very short quantum wires (quantum contacts) exhibit a conductance structure
at a value of conductance close to . It is believed that the
structure arises due to the electron-electron interaction, and it is also
related to electron spin. However details of the mechanism of the structure are
not quite clear. Previously we approached the problem within the restricted
Hartree-Fock approximation. This calculation demonstrated a structure similar
to that observed experimentally. In the present work we perform restricted and
unrestricted Hartree-Fock calculations to analyze the validity of the
approximations. We also consider dependence of the effect on the electron
density in leads. The unrestricted Hartree-Fock method allows us to analyze
trapping of the single electron within the contact. Such trapping would result
in the Kondo model for the ``0.7 structure''. The present calculation confirms
the spin-dependent bound state picture and does not confirm the Kondo model
scenario.Comment: 6 pages, 9 figure
Ladder approximation to spin velocities in quantum wires
The spin sector of charge-spin separated single mode quantum wires is
studied, accounting for realistic microscopic electron-electron interactions.
We utilize the ladder approximation (LA) to the interaction vertex and exploit
thermodynamic relations to obtain spin velocities. Down to not too small
carrier densities our results compare well with existing quantum Monte-Carlo
(QMC) data. Analyzing second order diagrams we identify logarithmically
divergent contributions as crucial which the LA includes but which are missed,
for example, by the self-consistent Hartree-Fock approximation. Contrary to
other approximations the LA yields a non-trivial spin conductance. Its
considerably smaller computational effort compared to numerically exact
methods, such as the QMC method, enables us to study overall dependences on
interaction parameters. We identify the short distance part of the interaction
to govern spin sector properties.Comment: 6 pages, 6 figures, to appear in Physical Review
On the Ground State of Electron Gases at Negative Compressibility
Two- and three-dimensional electron gases with a uniform neutralizing
background are studied at negative compressibility. Parametrized expressions
for the dielectric function are used to access this strong-coupling regime,
where the screened Coulomb potential becomes overall attractive for like
charges. Closely examining these expressions reveals that the ground state with
a periodic modulation of the charge density, albeit exponentially damped,
replaces the homogeneous one at positive compressibility. The wavevector
characterizing the new ground state depends on the density and is complex,
having a positive imaginary part, as does the homogeneous ground state, and
real part, as does the genuine charge density wave.Comment: 6 double-column pages, 2 figures. 2nd version is an extension of the
1st one, giving more detail
Tomonaga-Luttinger parameters for quantum wires
The low-energy properties of a homogeneous one-dimensional electron system
are completely specified by two Tomonaga-Luttinger parameters and
. In this paper we discuss microscopic estimates of the values of
these parameters in semiconductor quantum wires that exploit their relationship
to thermodynamic properties. Motivated by the recognized similarity between
correlations in the ground state of a one-dimensional electron liquid and
correlations in a Wigner crystal, we evaluate these thermodynamic quantities in
a self-consistent Hartree-Fock approximation. According to our calculations,
the Hartree-Fock approximation ground state is a Wigner crystal at all electron
densities and has antiferromagnetic order that gradually evolves from
spin-density-wave to localized in character as the density is lowered. Our
results for are in good agreement with weak-coupling perturbative
estimates at high densities, but deviate strongly at low
densities, especially when the electron-electron interaction is screened at
long distances. vanishes at small carrier density
whereas we conjecture that when , implying that
should pass through a minimum at an intermediate density.
Observation of such a non-monotonic dependence on particle density would allow
to measure the range of the microscopic interaction. In the spin sector we find
that the spin velocity decreases with increasing interaction strength or
decreasing . Strong correlation effects make it difficult to obtain fully
consistent estimates of from Hartree-Fock calculations. We
conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit where
is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include
Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models
This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al
Impact of transient groundwater storage on the discharge of Himalayan rivers
International audienceIn the course of the transfer of precipitation into rivers, water is temporarily stored in reservoirs with different residence times such as soils, groundwater, snow and glaciers. In the central Himalaya, the water budget is thought to be primarily controlled by monsoon rainfall, snow and glacier melt, and secondarily by evapotranspiration. An additional contribution from deep groundwater has been deduced from the chemistry of Himalayan rivers, but its importance in the annual water budget remains to be evaluated. Here we analyse records of daily precipitation and discharge within twelve catchments in Nepal over about 30 years. We observe annual hysteresis loops--that is, a time lag between precipitation and discharge--in both glaciated and unglaciated catchments and independent of the geological setting. We infer that water is stored temporarily in a reservoir with characteristic response time of about 45 days, suggesting a diffusivity typical of fractured basement aquifers. We estimate this transient storage capacity at about 28km3 for the three main Nepal catchments; snow and glacier melt contribute around 14km3yr-1, about 10% of the annual river discharge. We conclude that groundwater storage in a fractured basement influences significantly the Himalayan river discharge cycle
Denudation and Weathering Rates of Carbonate Landscapes From Meteoric 10Be/9Be Ratios
Knowledge of the rates of carbonate rock denudation, the relative apportionment of chemical weathering versus physical erosion, and their sensitivity to climate, vegetation, and tectonics is essential for disclosing feedbacks within the carbon cycle and the functioning of karst landscapes that supply important services to humans. Currently, however, for carbonate lithologies, no method exists that allows to simultaneously partition denudation into erosion and weathering fluxes at spatial scales ranging from soil to watersheds. To determine total denudation rates in carbonate landscapes from an individual soil or river sample, we adapted a published framework that combines cosmogenic meteoric 10 Be as an atmospheric flux tracer with stable 9 Be that is released from rocks by weathering, to the limestone‐dominated French Jura Mountains. By analyzing water, soil, sediment, travertine, and bedrock for 10 Be/ 9 Be, major and trace elements, carbon stable isotopes and radiogenic strontium, we quantified contributions of Be from primary versus secondary carbonate phases and its release during weathering from carbonate bedrock versus silicate impurities. We calculated partitioning of Be between solids and solutes, and rates of catchment‐wide (from sediment) and point source (from soil) denudation, weathering and erosion. Our results indicate that average denudation rates are 300–500 t/km 2 /yr. Denudation is dominated by weathering intensity (W/D) ratios of >0.92, and a non‐negligible contribution from deeper (below soil) weathering. Our rates agree to within less than a factor of two with decadal‐scale denudation rates from combined suspended and dissolved fluxes, highlighting the substantial potential of this method for future Earth surface studies
- …
