22 research outputs found

    Divergent Cortical Generators of MEG and EEG during Human Sleep Spindles Suggested by Distributed Source Modeling

    Get PDF
    Background: Sleep spindles are,1-second bursts of 10–15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phaselocked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators. Methodology/Principal Findings: We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere. Conclusions/Significance: The heterogeneity of MEG sources implies that multiple generators are active during huma

    Tissue-specific expression and promoter analysis of the tobacco Itp1 gene.

    No full text
    The Nicotiana tabacum Itp1 gene (Ntltp1) encodes a small basic protein that belongs to a class of putative lipid transfer proteins. These proteins transfer lipids between membranes in vitro, but their in vivo function remains hotly debated. This gene also serves as an important early marker for epidermis differentiation. We report here the analysis of the spatial and developmental activity of the Ntltp1 promoter, and we define a sequence element required for epidermis-specific expression. Transgenic plants were created containing 1346 bp of the Ntltp1 promoter fused upstream of the beta-glucuronidase (GUS) gene. In the mature aerial tissues, GUS activity was detected predominantly in the epidermis, whereas in younger aerial tissues, such as the shoot apical meristem and floral meristem, GUS expression was not restricted to the tunica layer. Unexpectedly, GUS activity was also detected in young roots particularly in the root epidermis. Furthermore, the Ntltp1 promoter displayed a tissue and developmental specific pattern of activity during germination. These results suggest that the Ntltp1 gene is highly expressed in regions of the plant that are vulnerable to pathogen attack and are thus consistent with the proposed function of lipid transfer proteins in plant defense. Deletions of the promoter from its 5' end revealed that the 148 bp preceding the translational start site are sufficient for epidermis-specific expression. Sequence comparison identified an eight-nucleotide palindromic sequence CTAGCTAG in the leader of Ntltp1, which is conserved in a number of other Itp genes. By gel retardation analysis, the presence of specific DNA-protein complexes in this region was demonstrated. The characterization of these factors may lead to the identification of factors that control early events in epidermis differentiation
    corecore