18,733 research outputs found

    Development and evaluation of infrared sensitive image sensors for space astronomy

    Get PDF
    The experimental development and evaluation of infrared vidicons for use in solving high precision high flux broadband astronomical problems are discussed. Data cover the EOS, silicon, and doped germanium vidicons. Results are graphed and problems encountered using the vidicons in electrical cameras are reported

    Velocity dispersions in galaxies: 1: The SO galaxy NGC 7332

    Get PDF
    A Coude spectrum of the SO galaxy NGC 7332 with 0.9 A resolution from 4186 to 4364 A was obtained with the SEC vidicon television camera and the Hale telescope. Comparisons with spectra of G and K giant stars, numerically broadened for various Maxwellian velocity distributions, give a dispersion velocity in the line of sight of 160 + or - 20 km/sec with the best fit at G8III. The dispersion appears to be constant within + or - 35 km/sec out to 1.4 kpc (H = 100 km/sec/mpc). After correction for projection, the rotation curve has a slope of 0.16 km/sec/pc at the center and a velocity of 130 km/sec at 1.4 kpc where it is still increasing. For an estimated effective radius of 3.5 kpc enclosing half the light, the virial theorem gives a mass of 1.4 x 10 to the 11th power solar masses if the mass-to-light ratio is constant throughout the galaxy. The photographic luminosity is 8.3 x 10 to the 9th power solar luminosities so that the M/L ratio is 17

    Helium energy levels including mα6m \alpha^6 corrections

    Full text link
    The mα6m \alpha^6 correction to energy is expressed in terms of an effective Hamiltonian H(6)H^{(6)} for an arbitrary state of helium. Numerical calculations are performed for n=2n=2 levels, and the previous result for the 23P2^3P centroid is corrected. While the resulting theoretical predictions for the ionization energy are in moderate agreement with experimental values for 23S12^3S_1, 23P2^3P, and 21S02^1S_0 states, they are in significant disagreement for the singlet state 21P12^1P_1.Comment: 11 pages, with erratum submitted to Phys. Rev. A (2007

    Choosing the lesser of two evils, the better of two goods: Specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice

    Get PDF
    The ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortices (ACd) are considered important for reward-based decision making. However, work distinguishing their individual functional contributions has only begun. One aspect of decision making that has received little attention is that making the right choice often translates to making the better choice. Thus, response choice often occurs in situations where both options are desirable (e.g., choosing between mousse au chocolat or crème caramel cheesecake from a menu) or, alternatively, in situations where both options are undesirable. Moreover, response choice is easier when the reinforcements associated with the objects are far apart, rather than close together, in value. We used functional magnetic resonance imaging to delineate the functional roles of the vmPFC and ACd by investigating these two aspects of decision making: (1) decision form (i.e., choosing between two objects to gain the greater reward or the lesser punishment), and (2) between-object reinforcement distance (i.e., the difference in reinforcements associated with the two objects). Blood oxygen level-dependent (BOLD) responses within the ACd and vmPFC were both related to decision form but differentially. Whereas ACd showed greater responses when deciding between objects to gain the lesser punishment, vmPFC showed greater responses when deciding between objects to gain the greater reward. Moreover, vmPFC was sensitive to reinforcement expectations associated with both the chosen and the forgone choice. In contrast, BOLD responses within ACd, but not vmPFC, related to between-object reinforcement distance, increasing as the distance between the reinforcements of the two objects decreased. These data are interpreted with reference to models of ACd and vmPFC functioning

    Extracting Radial Velocities of A- and B-type Stars from Echelle Spectrograph Calibration Spectra

    Get PDF
    We present a technique to extract radial velocity measurements from echelle spectrograph observations of rapidly rotating stars (Vsini50V\sin{i} \gtrsim 50 km s1^{-1}). This type of measurement is difficult because the line widths of such stars are often comparable to the width of a single echelle order. To compensate for the scarcity of lines and Doppler information content, we have developed a process that forward-models the observations, fitting the radial velocity shift of the star for all echelle orders simultaneously with the echelle blaze function. We use our technique to extract radial velocity measurements from a sample of rapidly rotating A- and B-type stars used as calibrator stars observed by the California Planet Survey observations. We measure absolute radial velocities with a precision ranging from 0.5-2.0 km s1^{-1} per epoch for more than 100 A- and B-type stars. In our sample of 10 well-sampled stars with radial velocity scatter in excess of their measurement uncertainties, three of these are single-lined binaries with long observational baselines. From this subsample, we present detections of two previously unknown spectroscopic binaries and one known astrometric system. Our technique will be useful in measuring or placing upper limits on the masses of sub-stellar companions discovered by wide-field transit surveys, and conducting future spectroscopic binarity surveys and Galactic space-motion studies of massive and/or young, rapidly-rotating stars.Comment: Accepted to ApJ

    Epidural Analgesia Decreases Narcotic Requirements in Low Level Spina Bifida Patients Undergoing Urologic Laparotomy for Neurogenic Bladder and Bowel

    Get PDF
    Purpose Concern of anatomical anomalies and worsening neurologic symptoms has prevented widespread use of epidural catheters in patients with low level spina bifida (LLSB). We hypothesize that thoracic epidural placement in the T9-T10 interspace is safe and decreases narcotic requirements in LLSB patients following major open lower urinary tract reconstruction (LUTR). Materials and Methods We reviewed consecutive LLSB patients who had LUTR and epidurals for post-operative pain control. Controls were LLSB patients who received single shot transversus abdominis plane (TAP) blocks with similar procedures. Complications from epidural placement, including changes in motor and sensory status were recorded. Opioid consumption was calculated utilizing equivalent IV morphine doses. Mean and maximum pain scores on post-operative day (POD) 0-3 were calculated. Results 10 LLSB patients who had lower urinary tract reconstruction and epidurals were matched to 10 LLSB patients who had lower urinary tract reconstruction and transverse abdominis plane blocks. Groups were demographically similar. All had full abdominal sensation and functional levels at or below L3. No epidural complications or changes in neurological status were noted. The epidural group had decreased opioid consumption on POD 0-3 (0.75 mg/kg vs. 1.29 mg/kg, p=0.04). Pain scores were similar or improved in the epidural group. Conclusions Thoracic epidural analgesia appears to be a safe and effective opioid sparing option to assist with post-operative pain management following lower urinary tract reconstruction in LLSB patients

    Reaching the quantum limit of sensitivity in electron spin resonance

    Get PDF
    We report pulsed electron-spin resonance (ESR) measurements on an ensemble of Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a Josephson parametric microwave amplifier combined with high-quality factor superconducting micro-resonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders of magnitude. We demonstrate the detection of 1700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio, reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance.Comment: Main text : 10 pages, 4 figures. Supplementary text : 16 pages, 8 figure
    corecore