859 research outputs found

    Homo Academicus . Posłowie – Dwadzieścia lat później

    Get PDF
    <p>-</p

    Characterisation of toxic gaseous emissions from industrial solid waste landfills

    Get PDF
    International audienceIn France, Hazardous Industrial Waste, once stabilized, are buried in specific landfills. As for all polluting activities, these facilities must report to the EPER Register their toxic gaseous emissions, expressed in mass per year, as soon as they exceed threshold limit values. Campaigns were conducted on two different hazardous waste landfills in order to establish if these facilities needed to report to EPER register. Global fluxes of gaseous components were measured by means of an FID (hydrocarbons) and a PID (halocarbons, aromatics and some non-organic compounds). Specific concentrations of aromatic (BTEX) and chlorinated hydrocarbons were also measured. Gaseous emissions were generally very low. Emissions were only detected for young and medium-aged layers, between 1 day and 3 months old. Due to these low emissions, and to the small surfaces involved, the two landfills do not fall under the EPER emission Register

    Self-degradable Cementitious Sealing Materials

    Get PDF
    A self-degradable alkali-activated cementitious material consisting of a sodium silicate activator, slag, Class C fly ash, and sodium carboxymethyl cellulose (CMC) additive was formulated as one dry mix component, and we evaluated its potential in laboratory for use as a temporary sealing material for Enhanced Geothermal System (EGS) wells. The self-degradation of alkali-activated cementitious material (AACM) occurred, when AACM heated at temperatures of {ge}200 C came in contact with water. We interpreted the mechanism of this water-initiated self-degradation as resulting from the in-situ exothermic reactions between the reactants yielded from the dissolution of the non-reacted or partially reacted sodium silicate activator and the thermal degradation of the CMC. The magnitude of self-degradation depended on the CMC content; its effective content in promoting degradation was {ge}0.7%. In contrast, no self-degradation was observed from CMC-modified Class G well cement. For 200 C-autoclaved AACMs without CMC, followed by heating at temperatures up to 300 C, they had a compressive strength ranging from 5982 to 4945 psi, which is {approx}3.5-fold higher than that of the commercial Class G well cement; the initial- and final-setting times of this AACM slurry at 85 C were {approx}60 and {approx}90 min. Two well-formed crystalline hydration phases, 1.1 nm tobermorite and calcium silicate hydrate (I), were responsible for developing this excellent high compressive strength. Although CMC is an attractive, as a degradation-promoting additive, its addition to both the AACM and the Class G well cement altered some properties of original cementitious materials; among those were an extending their setting times, an increasing their porosity, and lowering their compressive strength. Nevertheless, a 0.7% CMC-modified AACM as self-degradable cementitious material displayed the following properties before its breakdown by water; {approx}120 min initial- and {approx}180 min final-setting times at 85 C, and 1825 to 1375 psi compressive strength with 51.2 to 55.0% porosity up to 300 C

    Coherent instabilities in a semiconductor laser with fast gain recovery

    Get PDF
    We report the observation of a coherent multimode instability in quantum cascade lasers (QCLs), which is driven by the same fundamental mechanism of Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH) instability predicted 40 years ago for ring lasers. The threshold of the observed instability is significantly lower than in the original RNGH instability, which we attribute to saturable-absorption nonlinearity in the laser. Coherent effects, which cannot be reproduced by standard laser rate equations, can play therefore a key role in the multimode dynamics of QCLs, and in lasers with fast gain recovery in general.Comment: 5 pages, 4 figure

    Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise

    Get PDF
    The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth’s crust driven by human activity, tidal stresses and seismic motion, and from mass density fluctuations in the atmosphere. It is calculated that on Earth’s surface, on a typical day, it will exceed the expected GW signals at frequencies below 10 Hz. The noise will decrease underground by an unknown amount. It is important to investigate and to quantify this expected reduction and its effect on the sensitivity of future detectors, to plan for further improvement strategies. We report about some of these aspects. Analytical models can be used in the simplest scenarios to get a better qualitative and semi-quantitative understanding. As more complete modeling can be done numerically, we will discuss also some results obtained with a finite-element-based modeling tool. The method is verified by comparing its results with the results of analytic calculations for surface detectors. A key point about noise models is their initial parameters and conditions, which require detailed information about seismic motion in a real scenario. We will describe an effort to characterize the seismic activity at the Homestake mine which is currently in progress. This activity is specifically aimed to provide informations and to explore the site as a possible candidate for an underground observatory. Although the only compelling reason to put the interferometer underground is to reduce the Newtonian noise, we expect that the more stable underground environment will have a more general positive impact on the sensitivity.We will end this report with some considerations about seismic and suspension noise

    Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi

    Get PDF
    Intraoperative microelectrode recording (MER) for targeting during deep brain stimulation (DBS) procedures has been evaluated over a period of 4 years, in 57 consecutive patients with Parkinson's disease, who received DBS in the subthalamic nucleus (STN-DBS), and 28 consecutive patients with either dystonia (23) or Parkinson's disease (five), in whom the internal segment of the globus pallidus (GPi-DBS) was targeted. The procedure for DBS was a one-stage bilateral stereotactic approach using a combined electrode for both MER and macrostimulation. Up to five micro/macro-electrodes were used in an array with a central, lateral, medial, anterior, and posterior position. Final target location was based on intraoperative test stimulation. For the STN, the central trajectory was chosen for implantation in 50% of the cases and for the globus pallidus internus (GPi) in 57% of the cases. Furthermore, in 64% of the cases, the channel selected for the permanent electrode corresponded with the trajectory having the longest segment of STN MER activity. For the GPi, this was the case in 61%. The mean and standard deviation of the deepest contact point with respect to the magnetic resonance imaging (MRI)-based target for the STN was 2.1 +/- 1.5 mm and for the GPi was -0.5 +/- 1.2 mm. MER facilitates the selection of the final electrode location in STN-DBS and GPi-DBS, and based on the observed MER activity, a pre-selection could be made as to which channel would be the best candidate for macro-test stimulation and at which depth should be stimulated. The choice of the final location is based on intraoperative test stimulation, and it is demonstrated that regularly it is not the central channel that is chosen for implantation. On average, the target as defined by MER activity intensity was in accordance with the MRI-based targets both for the STN and GPi. However, the position of the best MER activity did not necessarily correlate with the locus that produced the most beneficial clinical response on macroelectrode testing intraoperativel

    Covering one eye in fixation-disparity measurement causes slight movement of fellow eye

    Get PDF
    In the subjective measurement of fixation disparity (FD), the subject fuses contours presented in the peripheral macular areas of both eyes (fusion lock). The position of the eyes relative to each other is monitored by means of two haploscopically seen vertical lines presented in the central macular area, one above and one below a binocularly seen horizontal line. The subject is instructed to shift one of the vertical lines horizontally until the two are aligned, while fixating their intersection with the horizontal line. It has recently been questioned whether the foveolae really are pointed towards the perceived intersection. In this study, we monitored the position of one eye while intermittently covering the fellow eye, while the subject maintained fixation of the intersection of the remaining vertical line and the horizontal line. We found slight differences in position of the measured eye, depending on whether the other eye was covered or not, i.e. depending on the presence or absence of fusion in the macular periphery. These differences were more pronounced in the non-dominant eye
    corecore