1,718 research outputs found

    Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper

    No full text
    We experimentally demonstrate the use of saw-tooth optical pulses, which are shaped using a fiber Bragg grating, to achieve robust and high performance time-domain add-drop multiplexing in a scheme based on cross-phase (XPM) modulation in an optical fiber, with subsequent offset filtering. As compared to the use of more conventional pulse shapes, such as Gaussian pulses of a similar pulse width, the purpose-shaped saw-tooth pulses allow higher extinction ratios for the add and drop windows and significant improvements in the receiver sensitivity for the dropped and added channels

    Analysis of navigation pattern in the sport of rowing

    Get PDF
    The effect of weather and environmental conditions on sports has been extensively studied over the last few years (Pezzoli et al., 2010). Based upon the studies of Lobozewicz (1981) and of Kay and Vamplew (2002), Pezzoli and Cristofori (2008) have studied the impact of some specific environmental parameters over different sports using a particular impact index divided into five classes. This analysis clearly shows that most of the outdoor sport activities are strongly influenced by the variation of meteorological parameters. However the impact of meteorological conditions on outdoor sport activities has not yet been extensively studied. The aim of this research is to show that an accurate assessment of wind and wave parameters enables decisive improvements in both training and race strategy planning. Furthermore this analysis provide a very innovative working method for the applied sport research. The work has been based on in-situ measurements of both environmental and performance parameters (wind direction, wind velocity, boat speed and stroke rate) made over different classes and in different race conditions during the 2009 FISA World Championship (Poznan, Poland). In particular a detailed environmental analysis was performed by measuring the wind direction, the wind speed and by evaluating the significant wave height and the wave peak period for each class during the semi-final phase and the final phase. It should be noted that, since wind is a key parameter affecting not only the boat speed but also the race strategy, the assessment of the wind velocity and of the wind direction has been made in connection with the boat movement. The comparison between coupled wind-wave data, boat speed and stroke rate evidently demonstrates that only crews that managed the adaption to changing in the environmental conditions from semi-final to final phase of the race, were able to get better results. References Kay, J., & Vamplew, W. (2002) Weather beaten: sport in the British climate. London: Ed. Mainstream Publishing. Lobozewicz, T. (1981) Meteorology in sport. Frankfurt: Ed. Sportverlag. Pezzoli, A,, Moncalero, M., Boscolo, A., Cristofori, E., Giacometto, F., Gastaldi, S., & Vercelli, G. (2010) The meteo-hydrological analysis and the sport performance: which are the connections? The case of the XXI Winter Olympic Games, Vancouver 2010, Journal of Sports Medicine and Physical Fitness, 50: 19-20. Pezzoli, A., & Cristofori, E. (2008) Analisi, previsioni e misure meteorologiche applicate agli sport equestri, in: 10th Congress "New findings in equine practices, Druento: Centro Internazionale del Cavallo Ed., p.38-4

    Report 1 PHIN-CARE-JRA2-WP3 Second Task: Pulse Shaping

    Get PDF
    This report presents the activity developed on laser pulse shaping argument in years 2004-2005 by Milano-INFN within the framework of CARE /JRA2 \Charge production with Photoinjectors" second task \Pulse Shaping". A dedicated laser system with the relative diagnostic tools have been developed. A liquid crystal programmable spatial light modulator(LCP-SLM) shaper have been studied and set for the generation of di®erent waveforms. The shaper is integrated in the laser system for an automatic generation of the target waveforms via the insetion of a computer which drives the system through the developed software. The system can be programmed to generate any target waveform compatible with the spectral bandwidth of the laser system and some exemples are presented. The following issues are treated: (i) the operation stability as function of perturbations of the set-up parameters, (ii) the design of the shaper for the SPARC project, (iii) a new shaper concept for the generation of long target waveforms and (iiii) the rectangular pulse generation at the second harmonic

    Electron Emission from Ferroelectric/Antiferroelectric Cathodes Excited by Short High-Voltage Pulses

    Get PDF
    Un-prepoled Lead Zirconate Titanate Lanthanum doped-PLZT ferroelectric cathodes have emitted intense current pulses under the action of a high voltage pulse of typically 8 kV/cm for PLZT of 8/65/35 composition and 25 kV/cm for PLZT of 4/95/5 composition. In the experiments described in this paper, the exciting electric field applied to the sample is directed from the rear surface towards the emitting surface. The resulting emission is due to an initial field emission from the metal of the grid deposited over the emitting surface with the consequent plasma formation and the switching of ferroelectric domains. These electrons may be emitted directly form the crystal or from the plasma. This emission requires the material in ferroelectric phase. In fact, PLZT cathodes of the 8/65/35 type, that is with high Titanium content, showing ferroelectric-paraelectric phase sequence, emit at room temperature, while PLZT cathodes of the 4/95/5 type, that is with low Titanium content, having antiferro-ferro-paraelectric phase sequence, emit strongly at a temperature higher than 130°C

    TLD Efficiency calculation for heavy ions: a new approach

    Get PDF

    An Experimental Platform for the Analysis of Polydisperse Systems Based on Light Scattering and Image Processing

    Get PDF
    In this work an experimental platform for light scattering analysis has been developed using image sensors, as CCD or CMOS. The main aim of this activity is the investigation of the feasibility of using these types of sensors for polydisperse systems analysis. The second purpose is the implementation of an experimental platform which is enough versatile to permit the observation of different phenomena in order to develop novel sensors/approach using data fusion

    Frequency addressing of nano-objects by electrical tuning of optical antennas

    Get PDF
    We first analyze the equivalent circuit parameters of linear wire optical nano-antennas in uniaxial anisotropic media. We then exploit the electro-optic response of a bipolar nematic liquid crystal to demonstrate tuning of an optical antenna using a low frequency external electric field as the control mechanism

    Design of beam optics for the Future Circular Collider e+e- -collider rings

    Full text link
    A beam optics scheme has been designed for the Future Circular Collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [2] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than +/-2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study

    Sub-picosecond compression by velocity bunching in a photo-injector

    Get PDF
    We present an experimental evidence of a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. The bunch length issued from a laser-driven radio-frequency electron source was compressed by a factor >3 using an S-band traveling wave structure located immediately downstream from the electron source. Experimental data are found to be in good agreement with particle tracking simulations.Comment: 19 pages, 9 figures, submitted to Phys. Rev. Spec. Topics A&
    corecore