203 research outputs found

    Stress response of a boreo-alpine species of tardigrade, Borealibius zetlandicus (Eutardigrada, Hypsibiidae)

    Get PDF
    Invertebrates living in extreme environments as well as those living under unpredictable habitat conditions must be able to survive severe environmental stresses bound to their habitats. Tardigrades represent a good animal model to analyze responses evolved by organisms to overcome extreme environmental stresses or to colonize extreme environments because they respond to desiccation or freezing in their habitats by entering cryptobiosis. The responses to environmental stresses have been evaluated almost exclusively in terrestrial tardigrades, while very little is known about the ability of limnic species to tolerate those stresses. This study evaluates the responses of the limnic boreo-alpine species Borealibius zetlandicus, under lab conditions, to stresses imposed by desiccation and temperature variation (freezing and heating). Our results indicate that active specimens are able to freeze, confirming the cryobiotic ability of this species. There is a negative correlation between survival and cooling rates. In contrast, no specimens of B. zetlandicus are able to survive desiccation. With regard to thermal tolerance, the animals show a high ability to resist heat-shock (LT50 = 33.0 0.5°C) for a short time. This wide tolerance to different environmental parameters could be the reason for the wide distribution of the species. Due to the disjunct distribution of the species and to the presence of cryptic tardigrade species that could have different ecological and physiological responses, we decided to characterize the population studied from a molecular point of view by investigating its COI mtDNA sequences

    Experiences with dormancy in tardigrades.

    Get PDF
    Tardigrades often colonise extreme habitats, in which they survive using both types of dormancy: quiescence and diapause. Together with nematodes and bdelloid rotifers, tardigrades are known to enter quiescence (with several forms of cryptobiosis: anhydrobiosis, cryobiosis, anoxybiosis, osmobiosis) at any stage of their life cycle, from egg to adult. Entering anhydrobiosis, tardigrades contract their body into a so-called tun, loosing most of their free and bound water (> 95%), synthesizing cell protectants (e.g., trehalose, glycerol, heat shock proteins) and strongly reducing or suspending their metabolism. Our research on cryptobiosis focused on some ecological and evolutionary aspects. We evaluated: i) the long-term anhydrobiotic survival by comparing quantitative data on recovery from naturally induced desiccation in several species of tardigrades; ii) differences in survival patterns between species and populations by experimentally inducing anhydrobiosis and cryobiosis; iii) phenotypic factors affecting anhydrobiotic survival. As regards diapause, we considered encystment and eggs. Encystment involves at least the synthesis of new cuticular structures. Morphological changes during cyst formation are more complex than those involved in tun formation. We analyzed more in detail encystment processes, comparing a semiterrestrial with a limnic species. Several inter-specific differences have been identified, other than the production of two types of cysts in the semiterrestrial species. Our analysis of life history traits of a laboratory reared strain of a soil tardigrade revealed a particular hatching phenology that involved the production of both subitaneous and resting eggs. The latter need a cue to hatch (dehydration followed by re-hydration). In addition, the evolutionary meaning of dormancy in tardigrades is discussed

    Vitiligo: What’s old, what’s new

    Get PDF
    Vitiligo is an acquired pigmentary disorder afflicting 0.5-2% of the world population for both sexes and all races with a capricious and unpredictable course. It has a complex etiology and varies in its manifestation, progression and response to treatment. Even if the precise aetiology and pathobiology of the disease are complex and still debated, recent evidence supports that vitiligo is a T CD8+ cell-mediated autoimmune disease triggered by oxidative stress. To date no clinical, biological and histological criteria allow us to establish the prognosis with certainty. The choice of the best therapy for adult and childhood vitiligo is based on various factors, such as the patient’s age, psychological condition and expectations, distribution and extension of skin lesions, type of vitiligo (stable or not) and availability and cost of therapeutic options. Since vitiligo has a deep psychological impact on patients and their quality of life, treating the disease is very important. As dermatologists, we have important goals in the treatment of vitiligo patients: stabilization of the disease progression, repigmentation of the lesions and especially the persistence of the aforementioned repigmentation. Although several medical and surgical therapeutic options have been proposed, no definite cure has yet been developed and the long-term persistence of repigmentation is unpredictable. We review the different therapeutic options with particular attention on the recurrence rate

    Phase equilibrium modelling of the amphibolite to granulite facies transition in metabasic rocks (Ivrea Zone, NW Italy)

    Get PDF
    The development of thermodynamic models for tonalitic melt and the updated clinopyroxene and amphibole models now allow the use of phase equilibrium modelling to estimate P–T conditions and melt production for anatectic mafic and intermediate rock types at high‐temperature conditions. The Permian mid‐lower crustal section of the Ivrea Zone preserves a metamorphic field gradient from mid amphibolite facies to granulite facies, and thus records the onset of partial melting in metabasic rocks. Interlayered metabasic and metapelitic rocks allows the direct comparison of P–T estimates and partial melting between both rock types with the same metamorphic evolution. Pseudosections for metabasic compositions calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system are presented and compared with those of metapelitic rocks calculated with consistent endmember data and a–x models. The results presented in this study show that P–T conditions obtained by phase equilibria modelling of both metabasic and metapelitic rocks give consistent results within uncertainties, allowing integration of results obtained for both rock types. In combination, the calculations for both metabasic and metapelitic rocks allows an updated and more precisely constrained metamorphic field gradient for Val Strona di Omegna to be defined. The new field gradient has a slightly lower dP/dT which is in better agreement with the onset of crustal thinning of the Adriatic margin during the Permian inferred in recent studies

    Systematic review of antiepileptic drugs’ safety and effectiveness in feline epilepsy

    Get PDF
    Understanding the efficacy and safety profile of antiepileptic drugs (AEDs) in feline epilepsy is a crucial consideration for managing this important brain disease. However, there is a lack of information about the treatment of feline epilepsy and therefore a systematic review was constructed to assess current evidence for the AEDs’ efficacy and tolerability in cats. The methods and materials of our former systematic reviews in canine epilepsy were mostly mirrored for the current systematic review in cats. Databases of PubMed, CAB Direct and Google scholar were searched to detect peer-reviewed studies reporting efficacy and/or adverse effects of AEDs in cats. The studies were assessed with regards to their quality of evidence, i.e. study design, study population, diagnostic criteria and overall risk of bias and the outcome measures reported, i.e. prevalence and 95% confidence interval of the successful and affected population in each study and in total

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure
    • 

    corecore