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ABSTRACT 

The development of thermodynamic models for tonalitic melt and the updated clinopyroxene and amphibole 

models now allow the use of phase equilibrium modelling to estimate P–T conditions and melt production for 

anatectic mafic and intermediate rock types at high-temperature conditions.  

 The Permian mid-lower crustal section of the Ivrea Zone preserves a metamorphic field gradient from mid 

amphibolite facies to granulite facies, and thus records the onset of partial melting in metabasic rocks. 

Interlayered metabasic and metapelitic rocks allows the direct comparison of P–T estimates and partial melting 

between both rock types with the same metamorphic evolution. Pseudosections for metabasic compositions 

calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system are 

presented and compared with those of metapelitic rocks calculated with consistent endmember data and a–x 

models. The results presented in this study show that P–T conditions obtained by phase equilibria modelling of 

both metabasic and metapelitic rocks give consistent results within uncertainties, allowing integration of results 

obtained for both rock types. In combination, the calculations for both metabasic and metapelitic rocks allows 

an updated and more precisely constrained metamorphic field gradient for Val Strona di Omegna to be defined. 

The new field gradient has a slightly lower dP/dT which is in better agreement with the onset of crustal thinning 

of the Adriatic margin during the Permian inferred in recent studies. 

 

Keywords: metabasic rocks, Ivrea Zone, mineral equilibria modelling, partial melting, THERMOCALC 

 

1 INTRODUCTION  

Understanding the P–T, melt production and melt loss evolution of high-temperature terranes is crucial to 

comprehending crustal evolution during orogenesis as melting and melt loss are the main driving forces of 

crustal differentiation (e.g., Brown & Rushmer, 2006; Johnson, Fischer, White, Brown, & Rollinson, 2012). 
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Regional metamorphic belts which expose continuous crustal sections represent ideal areas to study melting 

processes over a range of P–T conditions (e.g. Binns, 1964; Greenfield, Clarke, & White, 1998; Johnson, 

Kirkland, Reddy, & Fischer, 2015; Redler, White, & Johnson, 2013; Sawyer, 1991; Waters, 1986; White, 

Powell, & Clarke, 2003), allowing us to test and validate our observations and models derived through 

experimental petrology or geophysical observation (White et al., 2003). 

A significant proportion of the lower continental crust is inferred to be made up of basic rocks (e.g. 

Rudnick & Fountain, 1995). Under high-temperature metamorphic conditions (> 800°C, Rushmer, 1991; Wyllie 

& Wolf, 1993) these rocks can partially melt, evidenced by migmatites in metamorphic terranes (e.g. Hartel & 

Pattison, 1996; Johnson et al., 2012; Sawyer, 1991). Combining phase equilibrium modelling with field 

observation of migmatites has proven to be a powerful tool to study the metamorphic evolution of high-

temperature terranes (e.g. Johnson & Brown, 2004; Johnson & White, 2011; Korhonen, Saito, Brown, & 

Siddoway, 2010; White et al., 2003; White, Powell, & Halpin, 2004; White, Pomroy, & Powell, 2005). In recent 

years, the development and refinement of a–x models for rocks of mafic composition (Dale, Powell, White, 

Elmer, & Holland, 2005; Diener, Powell, White, & Holland, 2007; Diener & Powell, 2012; Green, Holland, & 

Powell, 2007; Green et al., 2016) and their use in determining P–T conditions, melt composition and production 

of metamorphic rocks have increased our understanding of melting and metamorphic evolution of mid-lower 

crustal rocks (e.g., Chapman, Clarke, Piazolo, & Daczko, 2017; Feisel, White, Palin, & Johnson, 2018; Palin et 

al., 2016; White, Palin, & Green, 2017; Yakymchuk, 2017).  

The new activity–composition relationships for minerals and melt in Green et al. (2016) allow high-

temperature suprasolidus equilibria in metabasic rocks to be calculated for the first time. This study uses 

THERMOCALC (Powell & Holland, 1988) and the new suite of models for mafic rocks from Green et al. (2016) to 

test the comparability of phase equilibrium modelling on metabasic rocks with those made on metapelitic rocks. 

Being able to compare the results with each other is crucial when linking P–T constraints across the different 

chemical systems and common rock types. Being able to extract reliable P–T conditions from metabasic rocks 

that may be directly compared to those from other rock types is especially important in terranes where no or few 

metapelitic rocks exist, such is the case in many Archean terrains (e.g. Palin, White, & Green, 2016; White et 

al., 2017).  
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The Ivrea Zone (NW Italy; Figure 1) is a well-studied profile through the mid to lower continental 

crust which exposes a continuous metamorphic field gradient through a sequence of interlayered metapelitic and 

metabasic rocks. Metamorphic conditions range from mid amphibolite facies (~650°C) to granulite facies 

(>900°C) conditions, covering the onset of partial melting in both metabasic and metapelitic rocks. Many 

previous studies have investigated the P–T conditions, partial melting and melt loss of the metapelitic rocks 

(Ewing, Hermann, & Rubatto, 2013; Henk, Franz, Teufel, & Oncken, 1997; Luvizotto & Zack, 2009; Redler, 

Johnson, White, & Kunz, 2012; Redler et al., 2013; Schmid & Wood, 1976; Zingg, 1980). Despite their 

potential to help constrain the metamorphic conditions of the Ivrea Zone, to date, the extraction of P–T 

conditions from metabasic rocks of the Kinzigite Formation have been restricted to only a few conventional 

thermobarometry studies (Henk et al., 1997; Reinsch, 1973a, b).  

Here, we present P–T pseudosections for six metabasic rocks from Val Strona di Omegna to constrain 

the P–T conditions of metamorphism and melt productivity. The results from the metabasic rocks are then 

compared to the samples used in the study by Redler et al. (2012), which have been recalculated with the 

updated Holland and Powell (2011) dataset to allow direct comparison with the metabasic rocks. The results 

from metabasic and metapelitic rocks are in good agreement with each other, suggesting information may be 

combined from both rock types to better constrain metamorphic conditions. Furthermore, the combined results 

provide a refined version of the metamorphic field gradient proposed by Redler et al. (2012).  

 

2 GEOLOGICAL SETTING 

The Ivrea Zone in the Southern Alps (N-Italy) exposes a NW dipping and NE–SW striking tilted cross section 

through the Permian mid to lower continental crust of the Adriatic margin (e.g., Handy, Franz, Heller, Janott, & 

Zurbriggen, 1999; Zingg, Handy, Hunziker, & Schmid, 1990). In the NW the Ivrea Zone is bordered by the 

Insubric Line (Gansser, 1968; Schmid, Zingg, & Handy, 1987) separating it from the units of the Central and 

Western Alps. Towards the SE the Cossato-Mergozzo-Brissago Line (CMB Line) and Pogallo Line separate the 

Ivrea Zone from the upper crustal units of the Serie dei Laghi/Strona-Ceneri Zone (Boriani, Burlini, & Sacchi, 

1990; Handy, 1987; Mulch, Rosenau, & Doerr, 2002; Mulch, Cosca, & Handy, 2002).  
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The Ivrea Zone (Figure 1) can be subdivided into magmatic rocks (Mafic Complex), metamorphic 

rocks (Kinzigite Formation) and subordinate ultramafic rocks (e.g., Quick et al., 2003; Zingg, 1978). The Mafic 

Complex intruded during the Permian (288 ± 4 Ma; Peressini, Quick, Sinigoi, Hofmann, & Fanning, 2007) into 

the Kinzigite Formation (Sinigoi, Quick, Demarchi, & Klötzli, 2011). In Val Sesia the Mafic Complex reaches 

its maximum thickness with ~8 km, exposing a layered intrusive series with dominantly amphibole gabbro’s 

towards the base and mostly gabbro’s, diorites and granites towards the top (Sinigoi, Quick, Mayer, & Budahn, 

1996). Between the lower and upper Mafic Complex the ‘paragneiss-bearing belt’ is an area were strongly 

restitic septa of Kinzigite Formation paragneisses crop out in thin slices (Sinigoi et al., 1991; Quick, Sinigoi, 

Negrini, Demarchi, & Mayer, 1992).  

The Kinzigite Formation consists of interlayered metasedimentary and metabasic rocks (e.g., Bertolani, 

1968; Zingg, 1978). The original relationship between the different rock types is unclear due to the strong 

metamorphic overprint and deformation during the Permian (e.g., Schmid, 1993; Vavra, Schmid, & Gebauer, 

1999). In Val Strona di Omegna (Figure 2) a continuous section from mid amphibolite to granulite facies 

conditions is exposed along 14 km of river section (e.g., Henk et al., 1997; Kunz, Johnson, White, & Redler, 

2014; Redler et al., 2012; Schmid, 1993; Zingg, 1978). Despite the occurrence of high-temperature shear zones 

in the area of the amphibolite to granulite facies transition (Rosarolo shear zone) a near-continuous 

metamorphic field gradient (Redler et al., 2012) and continuous geochronological results (e.g. Henk et al., 1997; 

Siegesmund et al., 2008) have been reported. Suggesting the offset or shortening within these shear zones is 

within the uncertainty of the thermobaromentric and geochronological methods used. The P–T conditions 

inferred for Val Strona di Omegna, using phase equilibrium modelling and Zr-in-rutile thermometry on 

metapelitic rocks, record peak metamorphic conditions of >900°C and 10–12 kbar (Ewing et al., 2013; 

Luvizotto & Zack, 2009; Redler et al., 2012, 2013). Compared to the many studies on metapelitic rocks and 

igneous rocks from the Mafic Complex, only few studies have looked extensively into the metamorphic and 

geochemical evolution of the metabasic rocks in Val Strona di Omegna (Bea & Montero, 1999; Kunz et al., 

2014; Reinsch, 1973a, b; Sills & Tarney, 1984). Based on trace element patterns Sills and Tarney (1984) 

classified the metabasic rock in Val Strona di Omegna as N-MORB and E-MORB with a possible accretionary 

wedge origin for the section.  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Similar to other granulite facies terranes (Harley, 2016; Kelsey & Hand, 2015) the ages obtained for 

the high-temperature granulite facies metamorphism in the Ivrea Zone span a range of more than 50 million 

years. A first phase of high-temperature conditions has been dated to 316 ± 3 Ma (Ewing et al., 2013), followed 

by a potentially extended period of high-temperature conditions until c.260 Ma (Ewing et al., 2013; Kunz, 

Regis, & Engi, 2018; Vavra et al., 1999).  

Studies from Barboza, Bergantz and Brown (1999), Barboza and Bergantz (2000), Redler et al. (2012) 

presented convincing evidence that the Mafic Complex was not the primary heat source for the regional 

granulite facies metamorphism in the Kinzigite Formation and that the high-grade metamorphism preceded 

intrusion. However in Val Sesia (Figure 1) a local contact aureole of 1–3 km at the contact to the mafic intrusion 

can be observed (Barboza et al., 1999; Redler et al., 2012) where the Mafic Complex intrudes rocks that reached 

only amphibolite facies regional metamorphic conditions.  

 

3 FIELD AND PETROGRAPHIC OBSERVATIONS 

In Val Strona di Omegna, where the continuous metamorphic field gradient is best exposed, metabasic rocks 

crop out as elongated lenses between metapelitic rocks and minor metapsammites, calcsilicates, marbles and 

ultramafic rocks (Bertolani, 1968). A detailed description of the field and petrographic features of metabasic 

rocks from Val Strona di Omegna is given in Kunz et al. (2014). In this study, six samples (Figure 2 and Table 

1) from the study of Kunz et al. (2014) were selected for phase equilibrium modelling and are briefly described 

below. In the present study migmatite terminology by Sawyer (2008) is used and mineral abbreviations are 

those used by THERMOCALC.  

 The mid amphibolite facies samples are commonly massive to weakly-foliated fine-grained 

amphibolites (Figure 3a), locally with rare cm-sized porphyroblasts of green hornblende. The metabasic rocks 

crop out as elongate lenses with a width of 10 cm to ~100 m. Evidence for partial melting, such as coarse 

grained leucocratic segregation (leucosome) are not observed in the field at this grade. However thin films of 

quartz along grain boundaries (Figure 4a) could be evidence for partial melting. Quartz and less commonly 

calcite veins cross-cut the mid amphibolite facies metabasic rocks (Figure 3a). The samples typically have a 

mineral assemblage of (green) hornblende, plagioclase, quartz, biotite and ilmenite (Table 1 and Figure 4a). 

Intergrowths of hornblende and biotite are common (Figure 4a) and in places define a weak foliation.  
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In the part of Val Strona di Omegna from Marmo to Rosarolo rocks of upper amphibolite facies 

conditions are exposed (Figure 2). In this part of the valley, metabasic rocks are more abundant than in others. 

The metabasic rocks start to show layering of leucocratic and melanocratic minerals (Figure 3b). For most of the 

upper amphibolite facies macroscopically it remains unclear if this is caused by in situ partial melting or 

subsolidus differentiation. Just south of the village of Rosarolo the metabasic rocks become more granoblastic 

and show the first macroscopic evidence for partial melting (Figure 3c), such as segregation of leucocratic 

material with peritectic clinopyroxene (Figure 3c). At first the leucocratic patches macroscopic visible in the 

field are a maximum a few cm big and discrete from each other (Figure 5a). Within several hundred metres 

towards the granulite facies transition the leucosome start to occur in the form of veins, both parallel to the 

foliation as well as cross cutting the foliation. The mineral assemblage (Table 1 and Figure 4b, c) of the 

metabasic rocks in the upper amphibolite facies is (green/brown) hornblende, clinopyroxene, plagioclase, 

biotite, quartz and ilmenite. Hornblende occurs as prograde matrix grains, as inclusions in clinopyroxene as well 

as retrograde partial replacement of clinopyroxene (Figures 3c and 4c, e). In thin section, features typical for 

partial melting such as thin films of quatzofeldspathic minerals along grain boundaries can be observed (Figure 

4b, c). 

Metabasic rocks from the granulite facies show extensive field evidence for partial melting such as in 

situ nebulitic to stromatic leucosomes (Figures 3d–f and 5b). Interconnected leucosome vein networks and 

former melt pools (i.e. located in boudin necks) commonly host coarse-grained clinopyroxene (Figures 3d–f and 

4e, f). Leucosome veins can be up to a metre wide and, where exposure allows, can be followed for several 

meters. No clear pattern of cross-cutting relationships between leucosomes derived from metapelitic and 

metabasic rocks can be found in outcrops where both rock types are present. The main mineral assemblage of 

granulite facies metabasic rocks is clinopyroxene, orthopyroxene, (brown) hornblende, plagioclase, biotite, 

garnet, ilmenite and quartz (Table 1 and Figure 4d–f). Clinopyroxene, orthopyroxene and garnet commonly 

form cm-sized porphyroblasts. In the highest grade samples (IZ 100) hornblende is only present as relics or 

secondary replacement (Figure 4f).  
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4 PHASE EQUILIBRIUM MODELLING 

For pseudosection modelling the program THERMOCALC 3.45i (Powell & Holland, 1988) together with the 

internally consistent thermodynamic dataset of Holland and Powell (2011), ds63 (created 24 Jan, 2015) for 

metabasic and ds62 (created 6 Feb, 2012) for metapelitic rocks has been used. The differences between these 

two versions of the Holland and Powell (2011) dataset are relatively minor and do not drastically influence the 

comparability of the two sets of calculations. The calculations were undertaken in the system NCKFMASHTO 

(Na2O–CaO–K2O–FeO–MgO–SiO2–H2O–TiO2–O). The following a–x models were used: tonalitic melt, 

clinoamphibole, clinopyroxene-augite (Green et al., 2016), orthopyroxene, garnet, biotite (White, Powell, 

Holland, Johnson, & Green, 2014), epidote (Holland & Powell, 2011), feldspars (Holland & Powell, 2003), 

magnetite (White, Powell, & Clarke, 2002) and ilmenite (White, Powell, & Holland, 2001). The same a–x 

models were used for the metapelite calculations with the exception that the white mica model and the 

haplogranitic melt model of White et al. (2014) were used. Additional pure phases for pseudosection calculation 

are quartz, rutile, titanite, sillimanite and aqueous fluid (H2O). 

The P–T pseudosections calculated for the metabasite samples are given in Figure 6. For pseudosection 

calculations normalised bulk rock composition in mol.% from XRF major element measurements were used 

(compositions are given above each pseudosection and Table 2). Loss on ignition (LOI) was utilized to 

determine the maximum potential amount of H2O in the bulk rock. This assumption leads to uncertainties, since 

SO3, CO2 and other fluids can influence the LOI significantly. Fe2O3 values were determined by iron titration. 

Manganese was not considered in the calculations, but is unlikely to have a strong effect on the results at mid 

amphibolite to granulite facies conditions, akin to that in metapelitic rocks (White et al., 2014). Each 

pseudosection shows the inferred peak mineral assemblage field highlighted and with bold text. Figure 7a shows 

a compilation of these peak assemblage fields from each sample presenting the metamorphic field gradient 

preserved in the metabasic rocks from Val Strona di Omegna. The black bold line in each pseudosection 

represents the solidus, the dashed line marks the hornblende out reaction. The thin white dashed lines in the 

pseudosection IZ 006 and IZ 014b are normalised mol.% contours for melt. Mineral abbreviations used in the 

P–T pseudosections are the following; L – tonalitic melt, hb – hornblende, aug – augite (clinopyroxene), opx – 

orthopyroxene, g – garnet, pl – plagioclase, mt – magnetite, ilm –ilmenite, ep – epidote, bi – biotite, sph – 

titanite, ru – rutile, q – quartz, H2O – fluid phase.  
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4.1 Mid amphibolite facies samples 

Both metabasic samples IZ 006 and IZ 014b from the mid amphibolite facies have the peak assemblage hb–pl–

bi–ilm–q±L (Figure 6a, b). No field evidence for partial melting was observed in these samples, however the 

presence of intergranular quartz and feldspar with low apparent dihedral angles (Figure 4a) observed in thin 

section is consistent with the presence of melt. This translates to suprasolidus P–T conditions for IZ 006 of 680–

770°C at 3–7.6 kbar in IZ 006 and 700–800°C at 3–9 kbar in IZ 014b (Table 1). Given the limited amount of 

partial melting evidence in thin section, the rocks are likely to be just above the solidus. The solidus in both mid 

amphibolite facies pseudosections occurs between 650 and 750°C, while the hb-out reaction in sample IZ 006 

occurs between ~820–930°C and in sample IZ 014b above 950°C.  

 

4.2 Upper amphibolite facies samples 

The two samples (IZ 035 and IV 051) from the upper amphibolite facies have narrow peak assemblage fields 

with the mineral assemblage hb–aug–pl–ilm–q–L (Figure 6c, d). This assemblage is indicative of the samples 

having experienced P–T conditions of 830–850°C at 7.2–8.5 kbar and 840–860°C at 6.7–8.5 kbar respectively 

(Table 1). For both samples the H2O content measured by LOI needed to be increased to calculate a 

pseudosection containing the peak mineral assemblage observed in the rock. This was done by calculating T–x 

diagrams for H2O at 7 kbar and then using the rbi function in THERMOCALC to infer the H2O content for the peak 

mineral assemblage (T–x diagrams are provided in Figure S3). Compared to the mid amphibolite facies samples 

a shift in the solidus (bold line) towards higher temperatures between 750–850°C can be observed. The 

hornblende-out (dashed line) reaction in the two upper amphibolite facies samples occurs at similar conditions 

as in sample IZ 014b above 950°C.  

 

4.3 Granulite facies samples 

The granulite facies, the metabasic samples have inferred peak assemblage hb–aug–opx–g–pl–ilm–L ± q (Figure 

6e, f). The assemblage field in the pseudosections give P–T estimates over a wide range of temperature 

conditions from 850–1050°C (IZ 161) and 940–990°C (IZ 100) over a limited pressure range of 7.2–9.5 kbar 

and 7.3–9.8 kbar respectively (Table 1). Both granulite facies samples show a solidus (bold line) shifted towards 
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higher temperatures >800–850°C compared to (hydrated) mid amphibolite facies samples (solidus ~650–

750°C). This is in agreement with the observed low H2O content (0.51–0.07 wt%) for granulite facies samples 

and likely the result of melt loss at high-grade conditions. Similarly to the lower grade samples, the hb-out 

reaction (dashed line) in IZ 161 occurs above 950°C, while in sample IZ 100 it occurs at 900–950°C.  

 

4.4 Metamorphic field gradient and comparison with metapelite results 

In addition to the pseudosections calculated for the six metabasic samples, the peak assemblage field for the 

metapelitic samples from the same valley transect studied by Redler et al. (2012, 2013) have been recalculated 

with the new dataset ds62 (Figure 7b). The recalculation was necessary to account for changes in the P–T 

position of the peak assemblage fields using the new dataset and a–x models compared to the older ds55 set 

used by Redler et al. (2012, 2013). This allows a direct comparison between the pseudosection calculations and 

the P–T conditions obtained for the two rock types (Figure 7b). For a detailed discussion on the differences 

between ds62 and previous datasets see Holland and Powell (2011). The new metamorphic field gradient 

presented in Figure 7b shows an overlap in the peak mineral assemblage fields between the results from 

metapelitic rocks and those from metabasic rocks. Furthermore, the difference between the previous presented 

metamorphic field gradient (Redler et al., 2012) with the results presented here are clear in Figure 7b. Applying 

the new internally consistent thermodynamic dataset (ds6) and associated a–x models to both rock types shifts 

the inferred mineral assemblage fields to lower pressures, particularly at higher T, creating a field gradient with 

a lower dP/dT (≈0.013 kbar/°C) than that presented in Redler et al. (2012) ≈0.024 kbar/°C. 

 

4.5 Melt production and composition 

Metamorphic field gradients through a sequence of rocks provide a unique opportunity to see the evolution of a 

given rock type at different metamorphic grades. This is of particular use in suprasolidus systems where likely 

protoliths to high-grade residual granulites can be measured and more realistic estimates of the partial melting 

history of rocks can be discerned. 
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Using the mid amphibolite samples as likely protolith compositions for the higher grade samples, melt 

mode contours in Figure 6a, b show the maximum potential melt fertility of the metabasic rocks as a function of 

P–T conditions. The mode contours show that 30–35 mol.% (approximation of vol.%) melt could be produced 

at the highest grade conditions of 900–950°C under closed system melting.  

The relationship between melt production and modal changes in the minerals can be illustrated in 

modebox plots. The plots in Figure 8a and 8b show the evolution of mineral assemblages, modes and melt 

abundance as a function of temperature along the metamorphic field gradient from 650°C at 5 kbar to 1000°C at 

9.9 kbar. Assuming the mid amphibolite facies metabasic rocks represent approximate protoliths for the 

granulite facies (Kunz et al., 2014) this allows us to study the prograde history. In the mode box plot of Figure 

8a hornblende, plagioclase and quartz represent the modally dominant phases until about 900°C when 

hornblende runs out. Figure 8b shows that also in sample IZ 014b hornblende, plagioclase and quartz modally 

dominate the mineral assemblage until 850°C, however biotite abundance is higher in this sample, in agreement 

with the observations in thin section. The breakdown of biotite at close to 850°C causes an increase in melt 

abundance. From thereon hornblende abundance decreases steadily but is not completely consumed until above 

1000°C.  

Figure 8c and 8d show the compositional evolution of melt produced by the same metabasic samples 

with increasing temperature along the metamorphic field gradient in the ternary anorthite (An), albite (Ab) and 

orthoclase (Or) compositional space using CIPW norms. The first melts produced in both samples modelled 

have a granitic composition which evolves with increasing P–T away from the Ab apex towards the Or–An join 

of the triangle. This compositional trend is largely driven by the breakdown of biotite and the release of K2O 

into the melt and persists until biotite is completely consumed at ≈820°C in IZ 006 and ≈850°C in IZ 014b. At 

P–T conditions beyond the stability of biotite, the melt compositions trend away from the Or apex into the 

granodiorite and/or tonalite field as the breakdown of hornblende begins to dominate melt production. From the 

mode box diagrams and the melt composition plots, it can be seen that P–T range over which melt production is 

highest coincides with the melt compositional transition from granite to granodiorite. 
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5 DISCUSSION & CONCLUSIONS 

The continuous crustal section in the Ivrea Zone exposing intercalated metapelitic and metabasic rocks 

provides an ideal opportunity to study how comparable P–T estimates derived from THERMOCALC are for 

different bulk rock types. Our study shows that it is possible to use metabasic rocks to infer P–T conditions, 

melting and melt loss for high-temperature metamorphic terranes that are consistent with those derived from 

metapelitic rocks. However, this does not imply that the models are perfect, they will all have associated errors 

and some mismatches between the models and rocks have been noted in other studies (e.g. Forshaw, Waters, 

Pattison, Palin, & Gopon, 2018). 

 

5.1 Comparison of P–T estimates  

Metabasic rocks from Val Strona di Omegna give a P–T range from 3–9 kbar and ~680–800°C at mid 

amphibolite facies conditions to 7.2–8.5 kbar at 830–860°C in the upper amphibolite facies and 7.2–9.8 kbar 

and 850–990°C for granulite facies samples (Figure 7a). These P–T conditions are in good agreement with 

previous estimates from forward modelling (3.5–11 kbar at 650 to <900°C; Redler et al., 2012, 2013) and Zr-in-

rutile thermometry (910–930°C; Ewing et al., 2013; Luvizotto & Zack, 2009).  

The assemblage fields in the mid amphibolite facies typically show a large range in P–T conditions 

(Green et al., 2016) and therefore do not provide well defined P–T estimates. Nevertheless the peak mineral 

assemblage fields for mid amphibolite facies metabasic samples IZ 006 and IZ 014b overlap and correlate well 

with those from metapelitic samples IZ 010 and IZ 061(Figures 7b and 9).  

The P–T conditions inferred for the upper amphibolite facies samples IZ 035 and IV 051 do not show 

overlap with those from the nearest metapelite sample IV 020 (Figure 7b), with the assemblage field from the 

metabasic rocks lying at higher pressure and temperatures. However, within uncertainty (± 50–100°C and 1–2 

kbar; Green et al., 2016) the P–T estimates derived from both rock types are in reasonable agreement (Figure 9). 

The lack of overlap could be due to (i) the failure to recognise a mineral present in thin section when 

determining the mineral assemblage or the absence of a phase in the thin section that is present in the larger 

sample used to derive the bulk rock. (ii) Changes in stability of mineral phases due to uncertainties in LOI 

determination or minor components (e.g. MnO, CO2, F, …) not present in the NCKFMASHTO system. Or, (iii) 

issues with the thermodynamic data used in the calculations. Palin et al. (2016) showed that slight changes in 
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bulk rock composition, especially H2O can affect the position of the solidus as well as other phases. For both 

samples (IZ 035 and IV 051), we needed to increase the H2O content, from 1.44 mol.% to 3.3 mol.% and 1.27 

mol.% to 3.2 mol.% in order to calculate a phase diagram which had the peak mineral assemblage observed in 

the samples. The adjusted H2O content is similar to that of the mid amphibolite facies samples (see Table 2) and 

therefore a realistic H2O content prior dehydration or melt loss. Nevertheless, there is some added uncertainty in 

the lower T limit of the upper amphibolite facies samples as the assemblage fields are defined by the solidus, 

which is highly dependent on water content of the rock (Palin et al., 2016). If these samples formed at slightly 

lower P–T, consistent with the nearby metapelite sample, the phase diagrams predict an identical assemblage 

but with the additional presence of biotite, which was not observed as a stable phase in the sample. However, 

this difference may reflect small inaccuracies in the a–x relationships used.  

The granulite facies metabasic samples IZ 161 and IZ 100 overlap with the metapelitic sample IZ 070 

(Figures 7b and 9). The fields in the granulite facies show a large range in temperature over a narrow range of 

pressure. At these conditions the assemblage field is limited towards higher temperatures by the hornblende-out 

reaction. To refine the peak T conditions we use the literature results derived from Zr-in-rutile thermometry 

along the metamorphic field gradient. The highest grade samples determined by Zr-in-rutile thermometry gives 

a maximum peak T of 930°C for Val Strona di Omegna (Ewing et al., 2013; Luvizotto & Zack, 2009). As our 

highest grade sample is slightly higher grade than those used for the Zr-in-rutile thermometry, we limit our peak 

P–T conditions to 940°C at 9 kbar along the metamorphic field gradient (Figure 7b). 

 

5.2 Metamorphic field gradient 

Based on the combination of constraints from both rock types we define a refined metamorphic field gradient 

(Figure 7b) for Val Strona di Omegna. Using the combined P–T estimates for the samples in this study results in 

a metamorphic field gradient from ~5 kbar at 650°C up to 940°C at 9 kbar. Similar to previous studies (e.g., 

Henk et al., 1997; Redler et al., 2012; Siegesmund et al., 2008) we have found no evidence for discontinuities in 

our modelled field gradient despite the presence of a high-temperature shear zone close to the amphibolite to 

granulite facies transition (Rosarolo shear zone). Nevertheless we cannot exclude the possibility of minor 

displacement undetectable within the uncertainties of our modelling. 
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In contrast the metamorphic field gradient in Val Strona di Omegna from Redler et al. (2012), based on 

phase equilibrium modelling of metapelitic rocks, showed a relative steep gradient from ~3.5–6.5 kbar at 650°C 

up to ~10–12 kbar above 900°C The updated version of the metamorphic field gradient based on both metabasic 

and metapelitic rocks calculated with the new thermodynamic dataset ds6 (Holland & Powell, 2011) is 

shallower. The consistency between the results derived from the metabasic rocks and those from the metapelitic 

rocks along the profile is shown in Figure 9. The lower pressures at higher temperatures of the metamorphic 

field gradient in this study are in better agreement with the inferred geological setting of crustal thinning and a 

higher heat flow due to astenospheric upwelling during the late Palaeozoic (Handy et al., 1999).  

 

5.3 Melting & melt loss in metabasic rocks 

The calculated modal abundance of melt (Figure 8a) show that sufficiently hydrated metabasic rocks in Val 

Strona di Omegna could produce up to 30 vol.% melt at the P–T conditions of the highest grade sample IZ 100. 

Field evidence based estimates for melt volume from Kunz et al. (2014) inferred 10–20 vol.% at the highest 

grades. This difference can be explained by melt loss or chemical variation (e.g. different degrees of hydration) 

in the protolith of amphibolite and granulite facies samples. Granulite facies metabasic rocks in this study have 

mostly anhydrous mineral assemblage and limited retrogression, therefore have undergone some melt loss (Palin 

et al., 2016; White & Powell, 2002). We present a simple closed system model for the modal abundance of 

mineral phases along the metamorphic field gradient together with the evolution of melt composition. The 

simple model approach used in this study does not take progressive prograde melt loss into account. Other 

studies using episodic melt loss models showed that due to the continuous melt loss the melt production at high 

grade is lower due to a reduced fertility after each melt loss event (Palin et al., 2016; Stuck & Diener, 2018; 

White & Powell, 2002; Yakymchuk & Brown, 2014).  

The mode box plots (Figure 8a) show that only small amounts of melt would have been produced until 

the onset of biotite breakdown. Above this, the melt volume increases sharply with increasing P–T. This is in 

agreement with the observations from the field and thin section, where microscopic or macroscopic evidence for 

partial melting occurs in mostly biotite absent assemblages. Only the highest grade sample IZ 100 appears to 

have run out of hornblende during melting. The melt composition, modelled using THERMOCALC, evolves from 

granitic to granodioritic and finally tonalitic. This trend in melt composition is in good agreement with the 

observed composition of leucosomes in thin sections going up grade.  
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Figure 10 shows the bulk rock composition of the average upper amphibolite facies and average 

granulite facies metabasic rocks normalised to the average mid amphibolite facies metabasic rock composition 

adapted from Kunz et al. (2014). Additional to the relative depletion (Na, K, and possibly Si, Al) of upper 

amphibolite and granulite facies samples due to progressive metamorphism and melt loss. We show that the 

predicted granulite facies rock compositions modelled from mid amphibolite facies samples (extracted with the 

rbi function in THERMOCALC) are consistent with the trends seen in natural average granulite facies 

compositions. The bulk rock composition of the melt-depleted residuum extracted at peak conditions from the 

mid amphibolite facies bulk rock composition shows lower K2O content than those of the average granulite 

facies. This could be due to the fact that the bulk rock composition is extracted at the highest grade conditions 

experienced in the region whereas some samples used to calculate the average granulite facies bulk rock 

composition likely experienced peak conditions below this regional maximum. Furthermore as discussed in 

more detail by Kunz et al. (2014) it is possible that there has been some contamination from K2O-rich melt or 

fluids derived from the surrounding metapelitic rocks into metabasic rocks. However the K2O concentration of 

IZ 100 (highest grade samples) is very similar to that derived from THERMOCALC modelling of melt-depleted 

residua. 

 The possibility of using metabasic and metapelitic rocks interchangeably or combined to derive P–T 

conditions for metamorphic terranes is of great advantage. With our study we have shown that the new a–x 

models (Green et al., 2016) produce results consistent with those derived from the metapelite models of White 

et al. (2014), at least for the P–T conditions and rock compositions preserved in the Ivrea zone.  
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SUPPORTING INFORMATION 

Additional Supporting Information may be found online in the supporting information tab for this article.  

Figure S1: Map of Val Strona di Omegna as in Figure 2 with the addition of the geological map redrawn after 

Bertolani (1986) 

Figure S2: Fully labelled P–T pseudosection presented in Figure 6 

Figure S3: T–x diagram for H2O content of upper amphibolite facies samples IZ 035 and IV 051 at 7 kbar 

Figure S4: Comparison of peak assemblage fields of the metapelitic rocks from Redler et al. (2012) calculated 

with ds55 and those of this study calculated with ds66 

 

Figure Captions 

Figure 1 Geological overview map of the Ivrea Zone (N-Italy). The map is redrawn after Bigi and Carrozzo 

(1990), Rutter et al. (2007) and Zingg (1980) 

 

Figure 2 Schematic map of Val Strona di Omegna with mineral isograds (taken from Kunz et al., 2014; Redler 

et al., 2012) and sample localities of metabasic rocks (stars) from this study and metapelitic samples (circles) 

from Redler et al. (2012). For a more detailed version of this map please refer to Figure S1 

 

Figure 3 Field photographs of representative metabasic rocks from the Kinzigite Formation, Val Strona di 

Omegna. (a) Fine grained metabasic rock with folded quartz (q) vein in the mid amphibolite facies. (b) Layered 

metabasic rock from the upper amphibolite facies with segregation of melanocratic (M) and leucocratic (L) 

material. (c) First mesoscopic evidence for partial melting in metabasic rocks c. 1 km south of the amphibolite 

to granulite facies transition zone. Patches of segregated leucosome (L) made of plagioclase and quartz with 

coarse-grained peritectic clinopyroxene (aug) crystals surrounded by melanosome (M) consisting of mostly 

hornblende and plagioclase. (d) Metabasic migmatite with leucocratic (L) material forming pockets which are 
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connected via leucocratic networks. At the interface of the leucosome (L) to the melanosome (M) it occasionally 

mafic selvage of hornblende (hb) can be observed (e) Metatexitic metabasic rock from the lower granulite 

facies. Leucosome (L) enriched in clinopyroxene pools in the low pressure sites of the boudinaged melanosome 

(M). On the right side of the image a cm-sized leucocratic vein (L) is visible. (f) Metabasic migmatite from the 

granulite facies were smaller leucosome veins (L) with abundant coarse-grained peritectic clinopxroxene (cpx) 

form networks feeding into larger leucosome veins 

 

Figure 4 Photomicrographs of metabasic rocks from Val Strona di Omegna (scale bar 1 mm). (a) Typical mid 

amphibolite facies sample (IZ 014b) with green hornblende and brown biotite making up the majority of the 

rock. Hornblende and biotite often show intergrowth. (b) Upper amphibolite facies sample (IZ 035) with 

clinopyroxene porphyroblasts, green hornblende, plagioclase, quartz and sphene. (c) Metabasic rock close to the 

amphibolite-granulite facies transition with a mineral assemblage of clinopyroxene, hornblende, plagioclase, 

quartz and ilmenite. Hornblende occurs in the matrix as well as replacing clinopyroxene. (d) Metabasic rock 

showing the typical granulite facies mineral assemblage clinopyroxene, orthopyroxene, hornblende, plagioclase, 

and ilmenite. Biotite is only present sporadically. (e) Thin section scan of the first field based evidence for 

partial melting. The left side of the image shows the metabasic rock with a slightly restitic composition 

dominated by hornblende. Towards the left the leucosome is dominated by plagioclase and quartz with large 

peritectic clinopyroxene crystals. In many cases clinopyroxene crystals show an overgrowth of hornblende. (f) 

Metabasic rock from Campello Monti (highest grade sample) with garnet, clino- and orthopyroxene 

porphyroblasts in a plagioclase matrix. Brown hornblende only occurs as inclusions in garnet or pyroxene or 

small relics within the matrix. Without clear overgrowth relationships it is usually not possible to distinguish 

between prograde and retrograde growth of the relic hornblende in the matrix 

 

Figure 5 Field sketches from metabasic rocks from Val Strona di Omegna. (a) First evidence for leucocratic 

segregation visible in the field, in a metabasic rocks ~500m south of the village Rosarolo at sample locality IV 

051. In several places small isolated pockets of leucocratic material form, which then aggregate into several cm 

big leucosome. The leucosome consists of mostly feldspar and quartz with coarse-grained peritectic 

clinopxroxene, occasionally overgrown or replaced by hornblende. (b) Metabasic migmatite from the lower 
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granulite facies were leucocratic veins with abundant coarse-grained peritectic clinopxroxene form a extended 

network around schollen of mostly melanosome or rarely paleosome 

 

Figure 6 P–T pseudosection for six metabasic rocks from Val Strona di Omegna from mid amphibolite (a, b), 

upper amphibolite facies (c, d) and granulite facies (e, f). Inferred peak assemblage fields are highlighted in 

each pseudosection with mineral assemblage in bold. The bold black line marks the solidus and the dashed black 

line marks the hornblende out. The two mid amphibolite facies samples (a, b) are contoured for the modal 

abundance melt (dashed white lines). A fully labelled version of the P–T pseudosection can be found in the 

Figure S2 

 

Figure 7 Metamorphic field gradient for Val Strona di Omegna. (a) Metamorphic field gradient based on peak 

mineral assemblage fields from metabasic rocks. Peak assemblage fields are coloured according to their 

metamorphic grade. (b) Metamorphic field gradient based on the combination of metapelitic and metabasic 

rocks (outlined bold) from the Kinzigite Formation in Val Strona di Omegna. For comparison the metamorphic 

field gradient from Redler et al. (2012) is shown as dashed lines. A direct comparison of the peak metamorphic 

assemblage field from Redler et al. (2012) with those of the present study can be found in Figure S4 

 

Figure 8 Mode box diagrams for sample (a) IZ 006 and (b) IZ 014b. (c) and (d) Ternary diagrams (Ab, Or, An) 

showing melt composition evolution along the metamorphic field gradient 

 

Figure 9 P–T estimates for the individual samples along the crustal section, with increasing distance from the 

CMB line the metamorphic grade increases. Both rock types (metabasic and metapelitic) give, within 

uncertainties (± 50–100°C and 1–2 kbar; Green et al., 2016), the same P–T conditions at approx. the same depth 

and metamorphic grade 
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Figure 10 Diagram showing the average major element composition of upper amphibolite facies (triangles) and 

granulite facies (circles) samples normalised to the average mid amphibolite facies composition taken from 

Kunz et al. (2014). Additionally plotted are the composition of sample IZ 006 and IZ 014b as well as the 

calculated residuum bulk rock composition (THERMOCALC rbi) of sample IZ 006 and IZ 014b at 940°C and 9 

kbar normalised to the average mid amphibolite facies 

 

Table Captions 

Table 1 List of samples, locality, mineral assemblage and calculated P–T conditions of metabasic rocks from 

Val Strona di Omegna 

 

Table 2 Bulk rock composition (mol.%) for metabasic rocks from Val Strona di Omegna used in peusdosection 

calculations. H2O values for IZ 035 and IV 051 used for pseudosection calculation have been adjusted (see text 

details) original H2O values determined by LOI are given in brackets  
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Table 1

Sample Lithology Locality Coordinates Mineral assemblage P–T conditions
E N G Opx Aug Hb Pl Q Ilm Bi P (kbar) T (°C)

Mid amphibolite facies
IZ 006 Amphibolite Germagno 452603 5082335 x x x x x 3–7.6 680–770
IZ 014b Amphibolite Loreglia 451414 5083567 x x x x x 3–9 700–800
Upper amphibolite facies
IZ 035 Cpx-amphibolite Marmo 446520 5084830 x x x x x x 7.2–8.5 830–850
IV 051 Metabasic migmatite Rosarolo 445186 5086123 x x x x x x  6.7–8.5 840–860
Granulite facies
IZ 161 Metabasic migmatite Piana di Forno 443516 5086975 x x x x x x x x 7.2–9.5 850–1050
IZ 100 Metabasic migmatite Campello Monti 440934 5087103 x x x (x) x (x) x (x) 7.3–9.8 940–990

This article is protected by copyright. All rights reserved. 
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Bulk rock composition (mol.%)

Sample H2O SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O
Mid amphibolite facies
IZ 006 3.08 58.50 11.55 9.55 5.85 7.26 0.48 3.46 0.69 0.80
IZ 014b 4.78 54.90 11.88 9.06 8.76 6.28 0.88 2.74 0.99 0.46
Upper amphibolite facies
IZ 035 3.3 (1.44) 51.00 8.50 13.44 11.79 10.71 0.34 2.08 1.25 0.78
IV 051 3.2 (1.27) 50.15 8.96 11.41 11.21 13.85 0.36 2.45 2.35 2.51
Granulite facies
IZ 161 1.85 50.07 11.48 12.90 8.42 10.99 0.47 2.41 1.88 1.03
IZ 100 0.26 52.39 13.32 11.75 7.75 10.25 0.23 2.91 1.30 0.78

Modelled residuum @ 940°C & 9 kbar
IZ 006 0.44 55.63 12.33 11.22 6.99 7.91 0.16 3.41 0.89 1.03
IZ 014b 1.81 50.97 12.73 10.79 11.36 7.35 0.26 2.76 1.35 0.63

This article is protected by copyright. All rights reserved. 
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