6,065 research outputs found
Looking at the future of manufacturing metrology: roadmap document of the German VDI/VDE Society for Measurement and Automatic Control
"Faster, safer, more accurately and more flexibly'' is the title of the "manufacturing metrology roadmap'' issued by the VDI/VDE Society for Measurement and Automatic Control (<a href="http://www.vdi.de/gma"target="_blank">http://www.vdi.de/gma</a>). The document presents a view of the development of metrology for industrial production over the next ten years and was drawn up by a German group of experts from research and industry. The following paper summarizes the content of the roadmap and explains the individual concepts of "Faster, safer, more accurately and more flexibly'' with the aid of examples
J004457+4123 (Sharov 21): not a remarkable nova in M31 but a background quasar with a spectacular UV flare
We announce the discovery of a quasar behind the disk of M31, which was
previously classified as a remarkable nova in our neighbour galaxy. The paper
is primarily aimed at the outburst of J004457+4123 (Sharov 21), with the first
part focussed on the optical spectroscopy and the improvement in the
photometric database. Both the optical spectrum and the broad band spectral
energy distribution of Sharov 21 are shown to be very similar to that of
normal, radio-quiet type 1 quasars. We present photometric data covering more
than a century and resulting in a long-term light curve that is densely sampled
over the past five decades. The variability of the quasar is characterized by a
ground state with typical fluctuation amplitudes of ~0.2 mag around B~20.5,
superimposed by a singular flare of ~2 yr duration (observer frame) with the
maximum at 1992.81 where the UV flux has increased by a factor of ~20. The
total energy in the flare is at least three orders of magnitudes higher than
the radiated energy of the most luminous supernovae, provided that it comes
from an intrinsic process and the energy is radiated isotropically. The profile
of the flare light curve appears to be in agreement with the standard
predictions for a stellar tidal disruption event where a ~10 M_sun giant star
was shredded in the tidal field of a ~2...5 10^8 M_sun black hole. The short
fallback time derived from the light curve requires an ultra-close encounter
where the pericentre of the stellar orbit is deep within the tidal disruption
radius. Gravitational microlensing provides an alternative explanation, though
the probability of such a high amplification event is very low.Comment: Accepted for publication in Astronomy and Astrophysics, 14 pages, 11
figure
Development of optical diaphragm deflection sensors
The objective of this project was to develop high-temperature pressure sensors using non-metallic components and optical sensing methods. The sensors are to operate over a temperature range from room temperature approx. 20C to 540C, to respond to internal pressure up to 690 kPa, to respond to external pressure up to 690 kPa, and to withstand external overpressure of 2070 kPa. Project tasks include evaluating sensing techniques and sensor systems. These efforts include materials and sensing method selection, sensor design, sensor fabrication, and sensor testing. Sensors are tested as a function of temperature, pressure, overpressure, and vibration. The project results show that high-temperature pressure sensors based on glass components and optical sensing methods are feasible. The microbend optical diaphragm deflection sensor exhibits the required sensitivity and stability for use as a pressure sensor with temperature compensation. for the microbend sensor, the 95% confidence level deviation of input pressure from the pressure calculated from the overall temperature-compensated calibration equation is 3.7% of full scale. The limitations of the sensors evaluated are primarily due to the restricted temperature range of suitable commercially available optical fibers and the problems associated with glass-to-metal pressure sealing over the entire testing temperature range
Precision Measurement of the 29Si, 33S, and 36Cl Binding Energies
The binding energies of 29Si, 33S, and 36Cl have been measured with a
relative uncertainty using a flat-crystal spectrometer.
The unique features of these measurements are 1) nearly perfect crystals whose
lattice spacing is known in meters, 2) a highly precise angle scale that is
derived from first principles, and 3) a gamma-ray measurement facility that is
coupled to a high flux reactor with near-core source capability. The binding
energy is obtained by measuring all gamma-rays in a cascade scheme connecting
the capture and ground states. The measurements require the extension of
precision flat-crystal diffraction techniques to the 5 to 6 MeV energy region,
a significant precision measurement challenge. The binding energies determined
from these gamma-ray measurements are consistent with recent highly accurate
atomic mass measurements within a relative uncertainty of .
The gamma-ray measurement uncertainties are the dominant contributors to the
uncertainty of this consistency test. The measured gamma-ray energies are in
agreement with earlier precision gamma-ray measurements.Comment: 13 pages, 4 figure
Non-local anomaly of the axial-vector current for bound states
We demonstrate that the amplitude does not vanish in the limit of zero quark masses. This
represents a new kind of violation of the classical equation of motion for the
axial current and should be interpreted as the axial anomaly for bound states.
The anomaly emerges in spite of the fact that the one loop integrals are
ultraviolet-finite as guaranteed by the presence of the bound-state wave
function. As a result, the amplitude behaves like in the limit of
a large momentum of the current. This is to be compared with the amplitude
which remains
finite in the limit .
The observed effect leads to the modification of the classical equation of
motion of the axial-vector current in terms of the non-local operator and can
be formulated as a non-local axial anomaly for bound states.Comment: revtex, 4 pages, numerical value for in Eq. (19) is
corrected, Eqs. (22) and (23) are modified. New references added. Results
remain unchange
Incomplete quantum state estimation: a comprehensive study
We present a detailed account of quantum state estimation by joint
maximization of the likelihood and the entropy. After establishing the
algorithms for both perfect and imperfect measurements, we apply the procedure
to data from simulated and actual experiments. We demonstrate that the
realistic situation of incomplete data from imperfect measurements can be
handled successfully.Comment: 11 pages, 10 figure
Statistics of dressed modes in a thermal state
By a Wigner-function calculation, we evaluate the trace of a certain Gaussian
operator arising in the theory of a boson system subject to both finite
temperature and (weak) interaction. Thereby we rederive (and generalize) a
recent result by Kocharovsky, Kocharovsky, and Scully [Phys. Rev. A, vol. 61,
art. 053606 (2000)] in a way that is technically much simpler. One step uses a
special case of the response of Wigner functions to linear transformations, and
we demonstrate the general case by simple means. As an application we extract
the counting statistics for each mode of the Bose gas.Comment: to appear in Optics Communications, 10 page
- …
