5,969 research outputs found
Exponential Hierarchy From Spacetime Variable String Vacua
It is shown that non-supersymmetric spacetime varying string vacua can lead
to an exponential hierarchy between the electroweak and the gravitational
scales. The hierarchy is naturally generated by a string coupling of O(1).Comment: 22 pages, Latex, 2 figure
On Relativistic Brane Probes in Singular Spacetimes
We study the relativistic dynamics of brane probes in singular warped
spacetimes and establish limits for such analysis. The behavior of the
semiclassical brane probe wave functions implies that unitarity boundary
conditions can be imposed at the singularity.Comment: 9 pages, 1 figure, typos corrected and references adde
The effect of additive noise on dynamical hysteresis
We investigate the properties of hysteresis cycles produced by a
one-dimensional, periodically forced Langevin equation. We show that depending
on amplitude and frequency of the forcing and on noise intensity, there are
three qualitatively different types of hysteresis cycles. Below a critical
noise intensity, the random area enclosed by hysteresis cycles is concentrated
near the deterministic area, which is different for small and large driving
amplitude. Above this threshold, the area of typical hysteresis cycles depends,
to leading order, only on the noise intensity. In all three regimes, we derive
mathematically rigorous estimates for expectation, variance, and the
probability of deviations of the hysteresis area from its typical value.Comment: 30 pages, 5 figure
On Semi-Periods
The periods of the three-form on a Calabi-Yau manifold are found as solutions
of the Picard-Fuchs equations; however, the toric varietal method leads to a
generalized hypergeometric system of equations which has more solutions than
just the periods. This same extended set of equations can be derived from
symmetry considerations. Semi-periods are solutions of this extended system.
They are obtained by integration of the three-form over chains; these chains
can be used to construct cycles which, when integrated over, give periods. In
simple examples we are able to obtain the complete set of solutions for the
extended system. We also conjecture that a certain modification of the method
will generate the full space of solutions in general.Comment: 18 pages, plain TeX. Revised derivation of system of
equations; version to appear in Nuclear Physics
Expand+Functional selection and systematic analysis of intronic splicing elements identify active sequence motifs and associated splicing factors
Despite the critical role of pre-mRNA splicing in generating proteomic diversity and regulating gene expression, the sequence composition and function of intronic splicing regulatory elements (ISREs) have not been well elucidated. Here, we employed a high-throughput in vivo Screening PLatform for Intronic Control Elements (SPLICE) to identify 125 unique ISRE sequences from a random nucleotide library in human cells. Bioinformatic analyses reveal consensus motifs that resemble splicing regulatory elements and binding sites for characterized splicing factors and that are enriched in the introns of naturally occurring spliced genes, supporting their biological relevance. In vivo characterization, including an RNAi silencing study, demonstrate that ISRE sequences can exhibit combinatorial regulatory activity and that multiple trans-acting factors are involved in the regulatory effect of a single ISRE. Our work provides an initial examination into the sequence characteristics and function of ISREs, providing an important contribution to the splicing code
On Periods for String Compactifications
Motivated by recent developments in the computation of periods for string
compactifications with , we develop a complementary method which also
produces a convenient basis for related calculations. The models are realized
as Calabi--Yau hypersurfaces in weighted projective spaces of dimension four or
as Landau-Ginzburg vacua. The calculation reproduces known results and also
allows a treatment of Landau--Ginzburg orbifolds with more than five fields.Comment: HUPAPP-93/6, IASSNS-HEP-93/80, UTTG-27-93. 21 pages,harvma
Universality of residence-time distributions in non-adiabatic stochastic resonance
We present mathematically rigorous expressions for the residence-time and
first-passage-time distributions of a periodically forced Brownian particle in
a bistable potential. For a broad range of forcing frequencies and amplitudes,
the distributions are close to periodically modulated exponential ones.
Remarkably, the periodic modulations are governed by universal functions,
depending on a single parameter related to the forcing period. The behaviour of
the distributions and their moments is analysed, in particular in the low- and
high-frequency limits.Comment: 8 pages, 1 figure New version includes distinction between
first-passage-time and residence-time distribution
Mechanics of universal horizons
Modified gravity models such as Ho\v{r}ava-Lifshitz gravity or
Einstein-{\ae}ther theory violate local Lorentz invariance and therefore
destroy the notion of a universal light cone. Despite this, in the infrared
limit both models above possess static, spherically symmetric solutions with
"universal horizons" - hypersurfaces that are causal boundaries between an
interior region and asymptotic spatial infinity. In other words, there still
exist black hole solutions. We construct a Smarr formula (the relationship
between the total energy of the spacetime and the area of the horizon) for such
a horizon in Einstein-{\ae}ther theory. We further show that a slightly
modified first law of black hole mechanics still holds with the relevant area
now a cross-section of the universal horizon. We construct new analytic
solutions for certain Einstein-{\ae}ther Lagrangians and illustrate how our
results work in these exact cases. Our results suggest that holography may be
extended to these theories despite the very different causal structure as long
as the universal horizon remains the unique causal boundary when matter fields
are added.Comment: Minor clarifications. References update
Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems
We introduce a new method, allowing to describe slowly time-dependent
Langevin equations through the behaviour of individual paths. This approach
yields considerably more information than the computation of the probability
density. The main idea is to show that for sufficiently small noise intensity
and slow time dependence, the vast majority of paths remain in small space-time
sets, typically in the neighbourhood of potential wells. The size of these sets
often has a power-law dependence on the small parameters, with universal
exponents. The overall probability of exceptional paths is exponentially small,
with an exponent also showing power-law behaviour. The results cover time spans
up to the maximal Kramers time of the system. We apply our method to three
phenomena characteristic for bistable systems: stochastic resonance, dynamical
hysteresis and bifurcation delay, where it yields precise bounds on transition
probabilities, and the distribution of hysteresis areas and first-exit times.
We also discuss the effect of coloured noise.Comment: 37 pages, 11 figure
- …
