500 research outputs found

    One-dimensional phase transitions in a two-dimensional optical lattice

    Full text link
    A phase transition for bosonic atoms in a two-dimensional anisotropic optical lattice is considered. If the tunnelling rates in two directions are different, the system can undergo a transition between a two-dimensional superfluid and a one-dimensional Mott insulating array of strongly coupled tubes. The connection to other lattice models is exploited in order to better understand the phase transition. Critical properties are obtained using quantum Monte Carlo calculations. These critical properties are related to correlation properties of the bosons and a criterion for commensurate filling is established.Comment: 14 pages, 8 figure

    Matrix product decomposition and classical simulation of quantum dynamics in the presence of a symmetry

    Full text link
    We propose a refined matrix product state representation for many-body quantum states that are invariant under SU(2) transformations, and indicate how to extend the time-evolving block decimation (TEBD) algorithm in order to simulate time evolution in an SU(2) invariant system. The resulting algorithm is tested in a critical quantum spin chain and shown to be significantly more efficient than the standard TEBD.Comment: 5 pages, 4 figure

    Dynamics and Instabilities of Planar Tensile Cracks in Heterogeneous Media

    Full text link
    The dynamics of tensile crack fronts restricted to advance in a plane are studied. In an ideal linear elastic medium, a propagating mode along the crack front with a velocity slightly less than the Rayleigh wave velocity, is found to exist. But the dependence of the effective fracture toughness Γ(v)\Gamma(v) on the crack velocity is shown to destabilize the crack front if (dΓ)/(dv)<0(d\Gamma)/(dv)<0. Short wavelength radiation due to weak random heterogeneities leads to this instability at low velocities. The implications of these results for the crack dynamics are discussed.Comment: 12 page

    Ground state of the random-bond spin-1 Heisenberg chain

    Full text link
    Stochastic series expansion quantum Monte Carlo is used to study the ground state of the antiferromagnetic spin-1 Heisenberg chain with bond disorder. Typical spin- and string-correlations functions behave in accordance with real-space renormalization group predictions for the random-singlet phase. The average string-correlation function decays algebraically with an exponent of -0.378(6), in very good agreement with the prediction of (35)/20.382-(3-\sqrt{5})/2\simeq -0.382, while the average spin-correlation function is found to decay with an exponent of about -1, quite different from the expected value of -2. By implementing the concept of directed loops for the spin-1 chain we show that autocorrelation times can be reduced by up to two orders of magnitude.Comment: 9 pages, 10 figure

    Mott Transition and Spin Structures of Spin-1 Bosons in Two-Dimensional Optical Lattice at Unit Filling

    Full text link
    We study the ground state properties of spin-1 bosons in a two-dimensional optical lattice, by applying a variational Monte Carlo method to the S=1 Bose-Hubbard model on a square lattice at unit filling. A doublon-holon binding factor introduced in the trial state provides a noticeable improvement in the variational energy over the conventional Gutzwiller wave function and allows us to deal effectively with the inter-site correlations of particle densities and spins. We systematically show how spin-dependent interactions modify the superfluid-Mott insulator transitions in the S=1 Bose-Hubbard model due to the interplay between the density and spin fluctuations of bosons. Furthermore, regarding the magnetic phases in the Mott region, the calculated spin structure factor elucidates the emergence of nematic and ferromagnetic spin orders for antiferromagnetic (U2>0U_2>0) and ferromagnetic (U2<0U_2<0) couplings, respectively.Comment: 5 pages, 5 figures, to appear in Journal of the Physical Society of Japa

    Crack Front Waves and the dynamics of a rapidly moving crack

    Full text link
    Crack front waves are localized waves that propagate along the leading edge of a crack. They are generated by the interaction of a crack with a localized material inhomogeneity. We show that front waves are nonlinear entities that transport energy, generate surface structure and lead to localized velocity fluctuations. Their existence locally imparts inertia, which is not incorporated in current theories of fracture, to initially "massless" cracks. This, coupled to crack instabilities, yields both inhomogeneity and scaling behavior within fracture surface structure.Comment: Embedded Latex file including 4 figure

    Variational Monte Carlo analysis of the Hubbard model with a confining potential: one-dimensional fermionic optical lattice systems

    Full text link
    We investigate the one-dimensional Hubbard model with a confining potential, which may describe cold fermionic atoms trapped in an optical lattice. Combining the variational Monte Carlo simulations with the new stochastic reconfiguration scheme proposed by Sorella, we present an efficient method to systematically treat the ground state properties of the confined system with a site-dependent potential. By taking into account intersite correlations as well as site-dependent on-site correlations, we are able to describe the coexistence of the metallic and Mott insulating regions, which is consistent with other numerical results. Several possible improvements of the trial states are also addressed.Comment: 7 pages, 15 figures; removed unnecessary graphs (p.8-p.32 in the old version are removed

    Impacto da exposição académica no estado de saúde de estudantes universitários

    Get PDF
    OBJECTIVE: To assess the impact of academic life on health status of university students. METHODS: Longitudinal study including 154 undergraduate students from the Universidade de Aveiro, Portugal, with at least two years of follow-up observations. Sociodemographic and behavioral characteristics were collected using questionnaires. Students' weight, height, blood pressure, serum glucose, serum lipids and serum homocysteine levels were measured. Regression analysis was performed using linear mixed-effect models, allowing for random effects at the participant level. RESULTS: A higher rate of dyslipidemia (44.0% vs. 28.6%), overweight (16.3% vs. 12.5%) and smoking (19.3% vs. 0.0%) was found among students exposed to the academic life when compared to freshmen. Physical inactivity was about 80%. Total cholesterol, high density lipoprotein-cholesterol (HDL-C), triglycerides, systolic blood pressure, and physical activity levels were significantly associated with gender (p<0.001). Academic exposure was associated with increased low density lipoprotein-cholesterol (LDL-C) levels (about 1.12 times), and marginally with total cholesterol levels (p=0.041). CONCLUSIONS: High education level does not seem to have a protective effect favoring a healthier lifestyle and being enrolled in health-related areas does not seem either to positively affect students' behaviors. Increased risk factors for non-transmissible diseases in university students raise concerns about their well-being. These results should support the implementation of health promotion and prevention programs at universities.OBJETIVO: Avaliar a influência da vida académica na saúde de estudantes universitários. MÉTODOS: Estudo longitudinal envolvendo 154 estudantes de graduação da Universidade de Aveiro, Portugal, por pelo menos dois anos de acompanhamento. Características sociodemográfi cas e comportamentais foram recordados, por meio de questionários. Foram medidos peso, altura,pressão arterial, glicemia, perfil lipídico e os níveis séricos de homocisteína dos alunos. Foi realizada análise de regressão com modelos lineares mistos considerando as medidas repetidas de cada sujeito. RESULTADOS: Estudantes expostos à vida académica, quando comparados àqueles de ingresso recente à universidade apresentaram proporção mais elevada de dislipidemia (44,0% versus 28,6%), sobrepeso (16,3% versus 12,5%) e tabagismo (19,3% versus 0,0%). No geral, foi observada alta proporção de sedentarismo (cerca de 80%). O colesterol total, lipoproteína de alta densidade, triglicérides, pressão arterial sistólica e níveis de atividade física apresentaram associação signifi cativa com o género (p < 0,001). A exposição académica apresentou-se associada com o aumento dos níveis das lipoproteínas de baixa densidade (cerca de 1,12 vezes), e marginalmente com os níveis de colesterol total (p = 0,041). CONCLUSÕES: Nem o alto nível de instrução parece ter papel protetor na adoção de estilo de vida saudável, tampouco o envolvimento com áreas de saúde muda o comportamento dos estudantes. Altas proporções de fatores de risco para doenças não-transmissíveis em jovens universitários podem afetar seu bem-estar. Os resultados podem servir de apoio às universidades no desenvolvimento de programas de prevenção e promoção da saúde

    The Loop Algorithm

    Full text link
    A review of the Loop Algorithm, its generalizations, and its relation to some other Monte Carlo techniques is given. The loop algorithm is a Quantum Monte Carlo procedure which employs nonlocal changes of worldline configurations, determined by local stochastic decisions. It is based on a formulation of quantum models of any dimension in an extended ensemble of worldlines and graphs, and is related to Swendsen-Wang algorithms. It can be represented directly on an operator level, both with a continuous imaginary time path integral and with the stochastic series expansion (SSE). It overcomes many of the difficulties of traditional worldline simulations. Autocorrelations are reduced by orders of magnitude. Grand-canonical ensembles, off-diagonal operators, and variance reduced estimators are accessible. In some cases, infinite systems can be simulated. For a restricted class of models, the fermion sign problem can be overcome. Transverse magnetic fields are handled efficiently, in contrast to strong diagonal ones. The method has been applied successfully to a variety of models for spin and charge degrees of freedom, including Heisenberg and XYZ spin models, hard-core bosons, Hubbard, and tJ-models. Due to the improved efficiency, precise calculations of asymptotic behavior and of quantum critical exponents have been possible.Comment: Third Edition, July 2002. (78 pages, 11 figures). To appear in Adv.Phys. Updated. New chapter on Operator Formulation, with continuous time and with SS
    corecore