254 research outputs found

    Directly observing squeezed phonon states with femtosecond x-ray diffraction

    Get PDF
    Squeezed states are quantum states of a harmonic oscillator in which the variance of two conjugate variables each oscillate out of phase. Ultrafast optical excitation of crystals can create squeezed phonon states, where the variance of the atomic displacements oscillates due to a sudden change in the interatomic bonding strength. With femtosecond x-ray diffraction we measure squeezing oscillations in bismuth and conclude that they are consistent with a model in which electronic excitation softens all phonon modes by a constant scaling factor

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure

    Ultrafast Laser-Induced Melting of Long-Range Magnetic Order in Multiferroic TbMnO3

    Full text link
    We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously observed in other systems. To explain the data we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wavevector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wavevector on these time scales.Comment: 9 pages, 4 figure

    How Do You Feel? Subjective Perception of Recovery as a Reliable Surrogate of Cognitive and Functional Outcome in Cardiac Arrest Survivors.

    Get PDF
    To show that subjective estimate of patient's condition is related to objective cognitive and functional outcome in cardiac arrest survivors. Longitudinal cohort study. ICU and Neuropsychology Service in two hospitals in Switzerland. Fifty survivors included from a prospective cohort of 138 patients admitted at the ICU for cardiopulmonary arrest. Comprehensive cognitive and functional evaluation at 6 months follow-up. Subjectively, 70% of survivors reported satisfactory recovery and 29% reported no complaints. Objectively, 76% were classified as good neurologic outcome (Cerebral Performance Category 1), 26% as having no symptoms (modified Rankin Scale 0), and 38% as upper good recovery (Glasgow Outcome Scale Extended 1). Cognitive assessment detected substantial cognitive impairment in 26%, primarily concerning processing speed, language, long-term memory, and executive functions. Subjective complaints severity correlated significantly with objective cognitive impairment (rS = 0.64; p < 0.001). Finally, patients reporting unsatisfactory recovery displayed lower functional scores than those reporting satisfactory recovery (e.g., quality of life satisfaction: 64% vs 81%; Z = 2.18; p = 0.03) and more cognitive impairment (three vs one cognitive domains impaired; Z = -3.21; p < 0.001), concerning in particular learning and long-term verbal and visual memory. Long-term subjective and objective outcome appears good in the majority of cardiac arrest survivors. Specific functional and cognitive impairments were found in patients reporting unsatisfactory recovery. Subjective recovery was strongly correlated with objective assessment

    Chaos in free electron laser oscillators

    Full text link
    The chaotic nature of a storage-ring Free Electron Laser (FEL) is investigated. The derivation of a low embedding dimension for the dynamics allows the low-dimensionality of this complex system to be observed, whereas its unpredictability is demonstrated, in some ranges of parameters, by a positive Lyapounov exponent. The route to chaos is then explored by tuning a single control parameter, and a period-doubling cascade is evidenced, as well as intermittence.Comment: Accepted in EPJ

    Directly Observing Squeezed Phonon States with Femtosecond X-Ray Diffraction

    Get PDF
    Squeezed states are quantum states of a harmonic oscillator in which the variance of two conjugate variables each oscillate out of phase. Ultrafast optical excitation of crystals can create squeezed phonon states, where the variance of the atomic displacements oscillates due to a sudden change in the interatomic bonding strength. With femtosecond x-ray diffraction we measure squeezing oscillations in bismuth and conclude that they are consistent with a model in which electronic excitation softens all phonon modes by a constant scaling factor

    Melting of magnetic order in NaOsO<sub>3</sub> by femtosecond laser pulses

    Get PDF
    NaOsO3 has recently attracted significant attention for the strong coupling between its electronic band structure and magnetic ordering. Here, we used time-resolved magnetic x-ray diffraction to determine the timescale of the photoinduced antiferromagnetic dynamics in NaOsO3. Our measurements are consistent with a sub-100 fs melting of the antiferromagnetic long-range order that occurs significantly faster than the lattice dynamics as monitored by the transient change in intensity of selected Bragg structural reflections, which instead show a decrease of intensity on a timescale of several ps

    The ultrafast Einstein–de Haas effect

    Get PDF
    The Einstein-de Haas effect was originally observed in a landmark experiment1 demonstrating that the angular momentum associated with aligned electron spins in a ferromagnet can be converted to mechanical angular momentum by reversing the direction of magnetization using an external magnetic field. A related problem concerns the timescale of this angular momentum transfer. Experiments have established that intense photoexcitation in several metallic ferromagnets leads to a drop in magnetization on a timescale shorter than 100 femtoseconds—a phenomenon called ultrafast demagnetization2,3,4. Although the microscopic mechanism for this process has been hotly debated, the key question of where the angular momentum goes on these femtosecond timescales remains unanswered. Here we use femtosecond time-resolved X-ray diffraction to show that most of the angular momentum lost from the spin system upon laser-induced demagnetization of ferromagnetic iron is transferred to the lattice on sub-picosecond timescales, launching a transverse strain wave that propagates from the surface into the bulk. By fitting a simple model of the X-ray data to simulations and optical data, we estimate that the angular momentum transfer occurs on a timescale of 200 femtoseconds and corresponds to 80 per cent of the angular momentum that is lost from the spin system. Our results show that interaction with the lattice has an essential role in the process of ultrafast demagnetization in this system

    Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO

    Full text link
    We report on the ultrafast dynamics of magnetic order in a single crystal of CuO at a temperature of 207 K in response to strong optical excitation using femtosecond resonant x-ray diffraction. In the experiment, a femtosecond laser pulse induces a sudden, nonequilibrium increase in magnetic disorder. After a short delay ranging from 400 fs to 2 ps, we observe changes in the relative intensity of the magnetic ordering diffraction peaks that indicate a shift from a collinear commensurate phase to a spiral incommensurate phase. These results indicate that the ultimate speed for this antiferromagnetic re-orientation transition in CuO is limited by the long-wavelength magnetic excitation connecting the two phases.Comment: Accepted by Physical Review Letters (Dec. 2, 2011
    corecore