19 research outputs found

    Witnessing nonequilibrium entanglement dynamics in a strongly correlated fermionic chain

    Get PDF
    Many-body entanglement in condensed matter systems can be diagnosed from equilibrium response functions through the use of entanglement witnesses and operator-specific quantum bounds. Here, we investigate the applicability of this approach for detecting entangled states in quantum systems driven out of equilibrium. We use a multipartite entanglement witness, the quantum Fisher information, to study the dynamics of a paradigmatic fermion chain undergoing a time-dependent change of the Coulomb interaction. Our results show that the quantum Fisher information is able to witness distinct signatures of multipartite entanglement both near and far from equilibrium that are robust against decoherence. We discuss implications of these findings for probing entanglement in light-driven quantum materials with time-resolved optical and x-ray scattering methods

    Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source

    Get PDF
    Time-resolved X-ray absorption spectroscopy (TR-XAS) has so far practically been limited to large-scale facilities, to sub-picosecond temporal resolution and to the condensed phase. Here, we report the realization of TR-XAS with a temporal resolution in the low femtosecond range by developing a table-top high-harmonic source reaching up to 350 eV, thus partially covering the spectral region of 280 to 530 eV, where water is transmissive. We use this source to follow previously unexamined light-induced chemical reactions in the lowest electronic states of isolated CF4+ and SF6+ molecules in the gas phase. By probing element-specific core-to-valence transitions at the carbon K-edge or the sulfur L-edges, we characterize their reaction paths and observe the effect of symmetry breaking through the splitting of absorption bands and Rydberg-valence mixing induced by the geometry changes

    Femtosecond photoelectron circular dichroism of chemical reactions

    Get PDF
    Understanding the chirality of molecular reaction pathways is essential for a broad range of fundamental and applied sciences. However, the current ability to probe chirality on the time scale of chemical reactions remains very limited. Here, we demonstrate time-resolved photoelectron circular dichroism (TRPECD) with ultrashort circularly polarized vacuum-ultraviolet (VUV) pulses from a table-top source. We demonstrate the capabilities of VUV-TRPECD by resolving the chirality changes in time during the photodissociation of atomic iodine from two chiral molecules. We identify several general key features of TRPECD, which include the ability to probe dynamical chirality along the complete photochemical reaction path, the sensitivity to the local chirality of the evolving scattering potential, and the influence of electron scattering off dissociating photofragments. Our results are interpreted by comparison with novel high-level ab-initio calculations of transient PECDs from molecular photoionization calculations. Our experimental and theoretical techniques define a general approach to femtochirality.Comment: 17 pages, 6 figures, 57 references, Accepted in Science Advance

    The sensitivities of high-harmonic generation and strong-field ionization to coupled electronic and nuclear dynamics

    No full text
    The sensitivities of high-harmonic generation (HHG) and strong-field ionization (SFI) to coupled electronic and nuclear dynamics are studied, using the nitric oxide (NO) molecule as an example. A coherent superposition of electronic and rotational states of NO is prepared by impulsive stimulated Raman scattering and probed by simultaneous detection of HHG and SFI yields. We observe a fourfold higher sensitivity of highharmonic generation to electronic dynamics and attribute it to the presence of inelastic quantum paths connecting coherently related electronic states [Kraus et al., Phys. Rev. Lett. 111, 243005 (2013)]. Whereas different harmonic orders display very different sensitivities to rotational or electronic dynamics, strong-field ionization is found to be most sensitive to electronic motion. We introduce a general theoretical formalism for high-harmonic generation from coupled nuclear-electronic wave packets. We show that the unequal sensitivities of different harmonic orders to electronic or rotational dynamics result from the angle dependence of the photorecombination matrix elements which encode several autoionizing and shape resonances in the photoionization continuum of NO. We further study the dependence of rotational and electronic coherences on the intensity of the excitation pulse and support the observations with calculations

    Spin-orbit delays in photoemission

    No full text
    Attosecond delays between photoelectron wave packets emitted from different electronic shells are now well established. Is there any delay between electrons originating from the same electronic shell but leaving the cation in different fine-structure states? This question is relevant for all attosecond photoemission studies involving heavy elements, be it atoms, molecules or solids. We answer this fundamental question by measuring energy-dependent delays between photoelectron wave packets associated with the 2P3/2^{2}P_{3/2} and 2P1/2^{2}P_{1/2} components of the electronic ground states of Xe+^+ and Kr+^+. We observe delays reaching up to 33±±6 as in the case of Xe. Our results are compared with two state-of-the-art theories. Whereas both theories quantitatively agree with the results obtained for Kr, neither of them fully reproduces the experimental results in Xe. Performing delay measurements very close to the ionization thresholds, we compare the agreement of several analytical formulas for the continuum-continuum delays with experimental data. Our results show an important influence of spin-orbit coupling on attosecond photoionization delays, highlight the requirement for additional theory development, and offer a precision benchmark for such work

    Spin-orbit delays in photoemission

    No full text

    Measurement and laser control of attosecond charge migration in ionized iodoacetylene

    No full text
    peer reviewedThe ultrafast motion of electrons and holes after light-matter interaction is fundamental to a broad range of chemical and biophysical processes. We advanced high-harmonic spectroscopy to resolve spatially and temporally the migration of an electron hole immediately after ionization of iodoacetylene while simultaneously demonstrating extensive control over the process. A multidimensional approach, based on the measurement and accurate theoretical description of both even and odd harmonic orders, enabled us to reconstruct both quantum amplitudes and phases of the electronic states with a resolution of ~100 attoseconds. We separately reconstructed quasi–field-free and laser-controlled charge migration as a function of the spatial orientation of the molecule and determined the shape of the hole created by ionization. Our technique opens the prospect of laser control over electronic primary processes.Control of attosecond dynamic
    corecore