2,112 research outputs found

    Simkania negevensis, an insight into the biology and clinical importance of a novel member of the Chlamydiales order.

    Get PDF
    Simkania negevensis is a Chlamydia-related bacterium discovered in 1993 and represents the founding member of the Simkaniaceae family within the Chlamydiales order. As other Chlamydiales, it is an obligate intracellular bacterium characterized by a biphasic developmental cycle. Its similarities with the pathogenic Chlamydia trachomatis and Chlamydia pneumoniae make it an interesting bacterium. So far, little is known about its biology, but S. negevensis harbors various microbiological characteristics of interest, including a strong association of the Simkania-containing vacuole with the ER and the presence of an intron in the 23S rRNA encoding gene. Evidence of human exposition has been reported worldwide. However, there is a lack of robust clinical studies evaluating its implication in human diseases; current data suggest an association with pneumonia and bronchiolitis making S. negevensis a potential emerging pathogen. Owing to its fastidious growth requirements, the clinical relevance of S. negevensis is probably underestimated. In this review, we summarize the current knowledge on S. negevensis and explore future research challenges

    Simkania negevensis, an Example of the Diversity of the Antimicrobial Susceptibility Pattern among Chlamydiales.

    Get PDF
    In past years, several <i>Chlamydia</i> -related bacteria have been discovered, including <i>Simkania negevensis</i> , the founding member of the <i>Simkaniaceae</i> family. We evaluated the antimicrobial susceptibility patterns of this emerging intracellular bacterium and highlighted significant differences, compared with related <i>Chlamydiales</i> members. <i>S. negevensis</i> was susceptible to macrolides, clindamycin, cyclines, rifampin, and quinolones. Importantly, unlike other <i>Chlamydiales</i> members, treatment with β-lactams and vancomycin did not induce the formation of aberrant bodies, leading to a completely resistant phenotype

    Ureaplasma urealyticum, Mycoplasma hominis and adverse pregnancy outcomes.

    Get PDF
    PURPOSE OF REVIEW: Mycoplasma hominis and Ureaplasma urealyticum may colonize the human genital tract and have been associated with adverse pregnancy outcomes. Chorioamnionitis, spontaneous preterm labour and preterm premature rupture of membranes are significant contributors to neonatal morbidity and mortality. However, as these bacteria can reside in the normal vaginal flora, there are controversies regarding their true role during pregnancy and thus the need to treat these organisms. RECENT FINDINGS: We review here the recent data on the epidemiology of mycoplasmas and their clinical role during pregnancy. The association of these organisms with preterm labour has been suggested by many observational studies, but proof of causality remains limited. PCR is an excellent alternative to culture to detect the presence of these organisms, but culture allows antibiotic susceptibility testing. Whether antimicrobial treatment of mycoplasma-colonized pregnant patients can effectively reduce the incidence of adverse pregnancy outcomes warrants further investigations. SUMMARY: The role of Mycoplasma spp. and U. urealyticum in adverse pregnancy outcomes is increasingly accepted. However, sole presence of these microorganisms in the vaginal flora might be insufficient to cause pathological issues, but their combination with other factors such as bacterial vaginosis or cervical incompetence may be additionally needed to induce preterm birth

    Comparison of five commercial serological tests for the detection of anti- Chlamydia trachomatis antibodies

    Get PDF
    Screening for Chlamydia trachomatis-specific antibodies is valuable in investigating recurrent miscarriage, tubal infertility and extrauterine pregnancy. We compared here the performance of immunofluorescence (IF) to four other commercial tests in detecting IgG antibodies directed against C. trachomatis: two enzyme-linked immunosorbent assays (ELISAs) using the major outer membrane protein (MOMP) as the antigen, commercialised respectively by Medac and R-Biopharm (RB), one ELISA using the chlamydial heat shock protein 60 (cHSP60) as the antigen (Medac), as well as a new automated epifluorescence immunoassay (InoDiag). A total of 405 patients with (n = 251) and without (n = 154) miscarriages were tested by all five tests. The prevalence of C. trachomatis-specific IgG antibodies as determined by the IF, cHSP60-Medac, MOMP-Medac, MOMP-RB and InoDiag was 14.3, 23.2, 14.3, 11.9 and 26.2%, respectively. InoDiag exhibited the highest sensitivity, whereas MOMP-RB showed the best specificity. Cross-reactivity was observed with C. pneumoniae using IF, MOMP-RB and InoDiag, and Parachlamydia acanthamoebae using the cHSP60 ELISA test. No cross-reactivity was observed between C. trachomatis and the other Chlamydiales (Neochlamydia hartmannellae, Waddlia chondrophila and Simkania negevensis). Given its high sensitivity, the new automated epifluorescence immunoassay from InoDiag represents an interesting alternative. The MOMP-based ELISA of R-Biopharm should be preferred for large serological studies, given the high throughput of ELISA and its excellent specificit

    Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research.

    Get PDF
    Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies

    Performance of an automated multiplex immunofluorescence assay for detection of Chlamydia trachomatis immunoglobulin G.

    Get PDF
    Chlamydia serology is indicated to investigate etiology of miscarriage, infertility, pelvic inflammatory disease, and ectopic pregnancy. Here, we assessed the reliability of a new automated-multiplex immunofluorescence assay (InoDiag test) to detect specific anti-C. trachomatis immunoglobulin G. Considering immunofluorescence assay (IF) as gold standard, InoDiag tests exhibited similar sensitivities (65.5%) but better specificities (95.1%-98%) than enzyme-linked immunosorbent assays (ELISAs). InoDiag tests demonstrated similar or lower cross-reactivity rates when compared to ELISA or IF

    Lifetime of OH masers at the tip of the asymptotic giant branch

    Full text link
    Context: A large fraction of otherwise similar asymptotic giant branch stars (AGB) do not show OH maser emission. As shown recently, a restricted lifetime may give a natural explanation as to why only part of any sample emits maser emission at a given epoch. Aims: We wish to probe the lifetime of 1612 MHz OH masers in circumstellar shells of AGB stars. Methods: We reobserved a sample of OH/IR stars discovered more than 28 years ago to determine the number of stars that may have since lost their masers. Results: We redetected all 114 OH masers. The minimum lifetime inferred is 2800 years (1 sigma). This maser lifetime applies to AGB stars with strong mass loss leading to very red infrared colors. The velocities and mean flux density levels have not changed since their discovery. As the minimum lifetime is of the same order as the wind crossing time, strong variations in the mass-loss process affecting the excitation conditions on timescales of ~3000 years or less are unlikely. Keywords: OH masers -- Stars: AGB and post-AGB -- circumstellar matterComment: 8 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Simkania negevensis may produce long-lasting infections in human pneumocytes and endometrial cells.

    Get PDF
    Simkania negevensis is a novel Chlamydia-related bacterium and the founding member of the Simkaniaceae family within the Chlamydiales order. Little is known about the biology and pathogenesis of this bacterium. So far, S. negevensis has been considered as an amoebal symbiont, but its natural host remains unknown. Moreover, evidence of human exposition has been reported worldwide and an association with pneumonia and bronchiolitis is suspected. Here, we evaluated the ability of S. negevensis to replicate in potential environmental reservoirs, namely amoebae and arthropods, as well as in mammalian cells (Vero cells, pneumocytes and endometrial cells) and further evaluated the characteristics of its replicative vacuole. We demonstrated that S. negevensis efficiently replicates in all cell lines tested, with the shortest doubling time and an increased adhesion observed in pneumocytes. Our work highlights the specificities of the Simkania-containing vacuole compared to other Chlamydiales; contrarily to Chlamydia trachomatis, S. negevensis does not disrupt the Golgi apparatus. Importantly, our work suggests that S. negevensis infection is associated with few cytopathic effects and might persist for a prolonged time in infected cells. Further evaluation of its implication in human diseases is required; an implication in chronic or subacute respiratory infections might be suspected

    A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase

    Get PDF
    A new colorimetric method has been developed to screen transaminases using an inexpensive amine donor. The assay is sensitive, has a low level of background coloration, and can be used to identify and profile transaminase activities against aldehyde and ketone substrates in a high-throughput format. Significantly it is also amendable to solid phase colony screening

    OH 12.8-0.9: A New Water-Fountain Source

    Full text link
    We present observational evidence that the OH/IR star OH 12.8-0.9 is the fourth in a class of objects previously dubbed "water-fountain" sources. Using the Very Long Baseline Array, we produced the first images of the water maser emission associated with OH 12.8-0.9. We find that the masers are located in two compact regions with an angular separation of ~109 mas on the sky. The axis of separation between the two maser regions is at a position angle of 1.5 deg. East of North with the blue-shifted (-80.5 to -85.5 km/s) masers located to the North and the red-shifted (-32.0 to -35.5 km/s) masers to the South. In addition, we find that the blue- and red-shifted masers are distributed along arc-like structures ~10-12 mas across oriented roughly perpendicular to the separation axis. The morphology exhibited by the water masers is suggestive of an axisymmetric wind with the masers tracing bow shocks formed as the wind impacts the ambient medium. This bipolar jet-like structure is typical of the three other confirmed water-fountain sources. When combined with the previously observed spectral characteristics of OH 12.8-0.9, the observed spatio-kinematic structure of the water masers provides strong evidence that OH 12.8-0.9 is indeed a member of the water-fountain class.Comment: 12 pages, 2 figures (1 color), accepted for publication in the Ap J Letter
    corecore