505 research outputs found

    Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS

    Get PDF
    Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8–12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40–60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations

    Mechanical ventilation in patients with acute ischaemic stroke: From pathophysiology to clinical practice

    Get PDF
    Most patients with ischaemic stroke are managed on the ward or in specialty stroke units, but a significant number requires higher-acuity care and, consequently, admission to the intensive care unit. Mechanical ventilation is frequently performed in these patients due to swallowing dysfunction and airway or respiratory system compromise. Experimental studies have focused on stroke-induced immunosuppression and brain-lung crosstalk, leading to increased pulmonary damage and inflammation, as well as reduced alveolar macrophage phagocytic capability, which may increase the risk of infection. Pulmonary complications, such as respiratory failure, pneumonia, pleural effusions, acute respiratory distress syndrome, lung oedema, and pulmonary embolism from venous thromboembolism, are common and found to be among the major causes of death in this group of patients. Furthermore, over the past two decades, tracheostomy use has increased among stroke patients, who can have unique indications for this procedure - depending on the location and type of stroke - when compared to the general population. However, the optimal mechanical ventilator strategy remains unclear in this population. Although a high tidal volume (V T) strategy has been used for many years, the latest evidence suggests that a protective ventilatory strategy (V T = 6-8 mL/kg predicted body weight, positive end-expiratory pressure and rescue recruitment manoeuvres) may also have a role in brain-damaged patients, including those with stroke. The aim of this narrative review is to explore the pathophysiology of brain-lung interactions after acute ischaemic stroke and the management of mechanical ventilation in these patients

    T2 lesion location really matters: a 10 year follow-up study in primary progressive multiple sclerosis

    Get PDF
    Objectives: Prediction of long term clinical outcome in patients with primary progressive multiple sclerosis (PPMS) using imaging has important clinical implications, but remains challenging. We aimed to determine whether spatial location of T2 and T1 brain lesions predicts clinical progression during a 10-year follow-up in PPMS. Methods: Lesion probability maps of the T2 and T1 brain lesions were generated using the baseline scans of 80 patients with PPMS who were clinically assessed at baseline and then after 1, 2, 5 and 10 years. For each patient, the time (in years) taken before bilateral support was required to walk (time to event (TTE)) was used as a measure of progression rate. The probability of each voxel being ‘lesional’ was correlated with TTE, adjusting for age, gender, disease duration, centre and spinal cord cross sectional area, using a multiple linear regression model. To identify the best, independent predictor of progression, a Cox regression model was used. Results: A significant correlation between a shorter TTE and a higher probability of a voxel being lesional on T2 scans was found in the bilateral corticospinal tract and superior longitudinal fasciculus, and in the right inferior fronto-occipital fasciculus (p<0.05). The best predictor of progression rate was the T2 lesion load measured along the right inferior fronto-occipital fasciculus (p=0.016, hazard ratio 1.00652, 95% CI 1.00121 to 1.01186). Conclusion: Our results suggest that the location of T2 brain lesions in the motor and associative tracts is an important contributor to the progression of disability in PPMS, and is independent of spinal cord involvement

    Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial

    Full text link
    Purpose: The optimal ventilatory settings in patients after cardiac arrest and their association with outcome remain unclear. The aim of this study was to describe the ventilatory settings applied in the first 72 h of mechanical ventilation in patients after out-of-hospital cardiac arrest and their association with 6-month outcomes. Methods: Preplanned sub-analysis of the Target Temperature Management-2 trial. Clinical outcomes were mortality and functional status (assessed by the Modified Rankin Scale) 6 months after randomization. Results: A total of 1848 patients were included (mean age 64 [Standard Deviation, SD = 14] years). At 6 months, 950 (51%) patients were alive and 898 (49%) were dead. Median tidal volume (VT) was 7 (Interquartile range, IQR = 6.2-8.5) mL per Predicted Body Weight (PBW), positive end expiratory pressure (PEEP) was 7 (IQR = 5-9) cmH20, plateau pressure was 20 cmH20 (IQR = 17-23), driving pressure was 12 cmH20 (IQR = 10-15), mechanical power 16.2 J/min (IQR = 12.1-21.8), ventilatory ratio was 1.27 (IQR = 1.04-1.6), and respiratory rate was 17 breaths/minute (IQR = 14-20). Median partial pressure of oxygen was 87 mmHg (IQR = 75-105), and partial pressure of carbon dioxide was 40.5 mmHg (IQR = 36-45.7). Respiratory rate, driving pressure, and mechanical power were independently associated with 6-month mortality (omnibus p-values for their non-linear trajectories: p < 0.0001, p = 0.026, and p = 0.029, respectively). Respiratory rate and driving pressure were also independently associated with poor neurological outcome (odds ratio, OR = 1.035, 95% confidence interval, CI = 1.003-1.068, p = 0.030, and OR = 1.005, 95% CI = 1.001-1.036, p = 0.048). A composite formula calculated as [(4*driving pressure) + respiratory rate] was independently associated with mortality and poor neurological outcome. Conclusions: Protective ventilation strategies are commonly applied in patients after cardiac arrest. Ventilator settings in the first 72 h after hospital admission, in particular driving pressure and respiratory rate, may influence 6-month outcomes

    Moving towards 100% renewable electricity in Europe & North Africa by 2050

    Get PDF
    In spring 2010, European and international climate experts at PwC, the European Climate Forum, the Potsdam Institute for Climate Impact Research and the International Institute for Applied System Analysis published 100% Renewable Electricity - A roadmap to 2050 for Europe and North Africa. The report examined the potential for powering Europe and North Africa with renewable electricity exclusively by 2050. It set out a series of financial, market, infrastructure and government policy steps that would need to occur if such a "what if" vision was to be achieved. Now, a year on, this latest report provides a complementary analysis to the original roadmap. PwC, the Potsdam Institute for Climate Impact Research and the International Institute for Applied System Analysis, look at whether the vision of 100% renewable electricity has moved closer or further away as a result of current and recent developments over the last 12 months. The report, intended to support the wider debate in this area, examines five areas that are most critical to achieving progress and, through the lens of these five areas, looks at the impact of recent and current events

    Continuous Glucose Monitoring in Preterm Infants: The Role of Nutritional Management in Minimizing Glycemic Variability

    Get PDF
    Glycemic variability (GV) is common in preterm infants. In the premature population, GV is a risk factor for morbidity and mortality. Both hypo- and hyperglycemia can impair neurodevelopment. We investigated the impact of continuous versus intermittent tube enteral feeding on GV. In our prospective observational study, 20 preterm infants with a gestational age ≤ 34 weeks at either continuous or intermittent bolus full enteral feeding. For five days, continuous glucose monitoring (CGM) was utilized, which was achieved through the subcutaneous insertion of a sensor. A total of 27,532 measurements of blood glucose were taken. The mean amplitude of glycemic excursions did not differ between the two cohorts statistically. Continuous feeding resulted in higher positive values, increasing the risk of hypo- and hyperglycemia. Subjects who were small for their gestational age had a higher standard deviation during continuous feeding (p = 0.001). Data suggest that intermittent bolus nutrition is better for glycemic control than continuous nutrition. Nutritional management optimization of preterm infants appears to be critical for long-term health. In the future, CGM may provide a better understanding of the optimal glucose targets for various clinical conditions, allowing for a more personalized approach to management

    Assessing whether artificial intelligence is an enabler or an inhibitor of sustainability at indicator level

    Get PDF
    "Since the early phase of the artificial-intelligence (AI) era expectations towards AI are high, with experts believing that AI paves the way for managing and handling various global challenges. However, the significant enabling and inhibiting influence of AI for sustainable development needs to be assessed carefully, given that the technology diffuses rapidly and affects millions of people worldwide on a day-to-day basis. To address this challenge, a panel discussion was organized by the KTH Royal Institute of Technology, the AI Sustainability Center and MIT Massachusetts Institute of Technology, gathering a wide range of AI experts. This paper summarizes the insights from the panel discussion around the following themes: The role of AI in achieving the Sustainable Development Goals (SDGs) AI for a prosperous 21st century Transparency, automated decision-making processes, and personal profiling and Measuring the relevance of Digitalization and Artificial Intelligence (D&AI) at the indicator level of SDGs. The research-backed panel discussion was dedicated to recognize and prioritize the agenda for addressing the pressing research gaps for academic research, funding bodies, professionals, as well as industry with an emphasis on the transportation sector. A common conclusion across these themes was the need to go beyond the development of AI in sectorial silos, so as to understand the impacts AI might have across societal, environmental, and economic outcomes. The recordings of the panel discussion can be found at: https://www.kth.se/en/2.18487/evenemang/the-role-of-ai-in-achieving-the-sdgs-enabler-or-inhibitor-1.1001364?date=2020â 08â 20&length=1&orglength=185&orgdate=2020â 06â 30 Short link: https://bit.ly/2Kap1tE © 2021"The authors acknowledge the KTH Sustainability Office and the KTH Digitalization Platform for their provided funding, which enabled the organization of this panel discussion. SG acknowledges the funding provided by the German Federal Ministry for Education and Research (BMBF) for the project “digitainable”. SDL acknowledges support through the Spanish Governmen

    Sarcopenia: age-related skeletal muscle changes from determinants to physical disability.

    Get PDF
    Human aging is characterized by skeletal muscle wasting, a debilitating condition which sets the susceptibility for diseases that directly affect the quality of life and often limit life span. Sarcopenia, i.e. the reduction of muscle mass and/or function, is the consequence of a reduction of protein synthesis and an increase in muscle protein degradation. In addition, the capacity for muscle regeneration is severely impaired in aging and this can lead to disability, particularly in patients with other concomitant diseases or organ impairment. Immobility and lack of exercise, increased levels of proinflammatory cytokines, increased production of oxygen free radicals or impaired detoxification, low anabolic hormone output, malnutrition and reduced neurological drive have been advocated as being responsible for sarcopenia. It is intriguing to notice that multiple pathways converge on skeletal muscle dysfunction, but the factors involved sometimes diverge to different pathways, thus intersecting at critical points. It is reasonable to argue that the activity of these nodes results from the net balance of regulating mechanisms, as in the case of the GH/IGF-1 axis, the testosterone and Cortisol functions, the pro- and anti-inflammatory cytokines and receptors. Both genetic and epigenetic mechanisms operate in regulating the final phenotype, the extent of muscle atrophy and reduction in strength and force generation. It is widely accepted that intervention on lifestyle habits represents an affordable and practical way to modify on a large scale some detrimental outcomes of aging, and particularly sarcopenia. The identification of the molecular chain able to reverse sarcopenia is a major goal of studies on human aging
    corecore