5,797 research outputs found

    ECLAIRs: A microsatellite for the prompt optical and X-ray emission of Gamma-Ray Bursts

    Get PDF
    The prompt gamma-ray emission of Gamma-Ray Bursts (GRBs) is currently interpreted in terms of radiation from electrons accelerated in internal shocks in a relativistic fireball. On the other hand, the origin of the prompt (and early afterglow) optical and X-ray emission is still debated, mostly because very few data exist for comparison with theoretical predictions. It is however commonly agreed that this emission hides important clues on the GRB physics and can be used to constrain the fireball parameters, the acceleration and emission processes and to probe the surroundings of the GRBs. ECLAIRs is a microsatellite devoted to the observation of the prompt optical and X-ray emission of GRBs. For about 150 GRBs/yr, independent of their duration, ECLAIRs will provide high time resolution high sensitivity spectral coverage from a few eV up to ~50 keV and localization to ~ 5'' in near real time. This capability is achieved by combining wide field optical and X-ray cameras sharing a common field of view (>~ 2.2 steradians) with the coded-mask imaging telescopes providing the triggers and the coarse localizations of the bursts. Given the delays to start ground-based observations in response to a GRB trigger, ECLAIRs is unique in its ability to observe the early phases (the first ~20 sec) of all GRBs at optical wavelengths. Furthermore, with its mode of operation, ECLAIRs will enable to search for optical and X-ray precursors expected from theoretical grounds. Finally ECLAIRsis proposed to operate simultaneously with GLAST on a similar orbit. This combination will both provide unprecedented spectral coverage from a few eV up to ~200 GeV for ~100 GRBs/yr, as well as accurate localization of the GLAST GRBs to enable follow-up studies

    Simultaneous BeppoSAX and Rossi X-ray Timing Explorer observations of 4U1812-12

    Get PDF
    4U1812-12 is a faint persistent and weakly variable neutron star X-ray binary. It was observed by BeppoSAX between April 20th and 21st, 2000 in a hard spectral state with a bolometric luminosity of ~2x10^36 ergs/s. Its broad band energy spectrum is characterized by the presence of a hard X-ray tail extending above ~100 keV. It can be represented as the sum of a dominant hard Comptonized component (electron temperature of ~36 keV and optical depth ~3) and a weak soft component. The latter component which can be fitted with a blackbody of about 0.6 keV and equivalent radius of ~2 km is likely to originate from the neutron star surface. We also report on the first measurement of the power density spectrum of the source rapid X-ray variability, as recorded during a simultaneous snapshot observation performed by the Rossi X-ray Timing Explorer. As expected for a neutron star system in such hard spectral state, its power density spectrum is characterized by the presence of a ~0.7 Hz low frequency quasi-periodic oscillation together with three broad noise components, one of which extends above ~200 Hz.Comment: 6 pages, 3 figures, accepted for publication in A&

    Simultaneous BeppoSAX and RXTE observations of the X-ray burst sources GX 3+1 and Ser X-1

    Get PDF
    We have obtained spectral and timing data on GX 3+1 and Ser X-1. Both sources were observed simultaneously with BeppoSAX and RXTE. The RXTE data is used to provide power spectra and colour-colour diagrams in order to constrain the state (and thus track M˙\dot M) the sources are in. The BeppoSAX data provide the broad-band spectra. The spectra of both sources are reasonably well-fit using a model consisting of a disk-blackbody, a comptonized component and a Fe line, absorbed by interstellar absorption. The electron temperature (kTe_{\rm e}) of the Comptonizing plasma is in both cases \sim2.5 keV. This implies that no strong high-energy tail from the Comptonized component is present in either of the sources. We discuss the similarities between these burst sources and the luminous X-ray sources located in globular clusters. We find that the spectral parameters of the comptonized component provide information about the mass-accretion rate, which agrees well with estimates from the timing and spectral variations.Comment: 8 pages, accepted by A&

    Probing X-ray burst -- accretion disk interaction in low mass X-ray binaries through kilohertz quasiperiodic oscillations

    Full text link
    The intense radiation flux of Type I X-ray bursts is expected to interact with the accretion flow around neutron stars. High frequency quasiperiodic oscillations (kHz QPOs), observed at frequencies matching orbital frequencies at tens of gravitational radii, offer a unique probe of the innermost disk regions. In this paper, we follow the lower kHz QPOs, in response to Type I X-ray bursts, in two prototypical QPO sources, namely 4U 1636-536 and 4U 1608-522, as observed by the Proportional Counter Array of the Rossi X-ray Timing Explorer. We have selected a sample of 15 bursts for which the kHz QPO frequency can be tracked on timescales commensurable with the burst durations (tens of seconds). We find evidence that the QPOs are affected for over ~200 s during one exceptionally long burst and ~100 s during two others (although at a less significant level), while the burst emission has already decayed to a level that would enable the pre-burst QPO to be detected. On the other hand, for most of our burst-kHz QPO sample, we show that the QPO is detected as soon as the statistics allow and in the best cases, we are able to set an upper limit of ~20 s on the recovery time of the QPO. This diversity of behavior cannot be related to differences in burst peak luminosity. We discuss these results in the framework of recent findings that accretion onto the neutron star may be enhanced during Type I X-ray bursts. The subsequent disk depletion could explain the disappearance of the QPO for ~100 s, as possibly observed in two events. However, alternative scenarios would have to be invoked for explaining the short recovery timescales inferred from most bursts. Clearly the combination of fast timing and spectral information of Type I X-ray bursts holds great potential in the study of the dynamics of the inner accretion flow around neutron stars.Comment: 8 pages, 9 figures, appears in Astronomy & Astrophysics, Volume 567, id.A80, published 07/201

    Monte-Carlo simulations of the background of the coded-mask camera for X- and Gamma-rays on-board the Chinese-French GRB mission SVOM

    Full text link
    For several decades now, wide-field coded mask cameras have been used with success to localise Gamma-ray bursts (GRBs). In these instruments, the event count rate is dominated by the photon background due to their large field of view and large effective area. It is therefore essential to estimate the instrument background expected in orbit during the early phases of the instrument design in order to optimise the scientific performances of the mission. We present here a detailed study of the instrument background and sensitivity of the coded-mask camera for X- and Gamma-rays (CXG) to be used in the detection and localisation of high-redshift GRBs on-board the international GRB mission SVOM. To compute the background spectrum, a Monte-Carlo approach was used to simulate the primary and secondary interactions between particles from the main components of the space environment that SVOM will encounter along its Low Earth Orbit (LEO) (with an altitude of 600 km and an inclination of ~ 30 deg) and the body of the CXG. We consider the detailed mass model of the CXG in its latest design. According to our results, i) the design of the passive shield of the camera ensures that in the 4-50 keV imaging band the cosmic X-Gamma-ray background is dominant whilst the internal background should start to become dominant above 70-90 keV; ii) the current camera design ensures that the CXG camera will be more sensitive to high-redshift GRBs than the Swift Burst Alert Telescope thanks to a low-energy threshold of 4 keV.Comment: 16 pages, 10 figures (1 colour), accepted for publication in Nuclear Instruments and Methods in Physics Research: Section

    RXTE Studies of X-ray Spectral Variations with Accretion Rate in 4U 1915-05

    Full text link
    We present the results of detailed spectral studies of the ultra-compact low mass X-ray binary (LMXB) 4U 1915-05 carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996. 4U 1915-05 is an X-ray burster (XRB) known to exhibit a ~199-day modulation in its 2--12 keV flux. Observations were performed with the PCA and HEXTE instruments on RXTE at roughly one-month intervals to sample this long-term period and study accretion rate-related spectral changes. We obtain good fits with a model consisting of a blackbody and an exponentially cut-off power law. The spectral parameters are strongly correlated with both the broad-band (2--50 keV) luminosity and the position in the color-color diagram, with the source moving from a low hard state to a high soft state as the accretion rate increases. The blackbody component appears to drive the spectral evolution. Our results are consistent with a geometry in which the soft component arises from an optically thick boundary layer and the hard component from an extended Comptonizing corona. Comparing our results with those of a similar study of the brighter source 4U 1820-30 (Bloser et al. 2000), we find that the two ultra-compact LMXBs occupy similar spectral states even though the transitions occur at very different total luminosities.Comment: 27 pages LaTeX, 8 figures, accepted to the Astrophysical Journa

    Morphological analysis on the coherence of kHz QPOs

    Full text link
    We take the recently published data of twin kHz quasi-period oscillations (QPOs) in neutron star (NS) lowmass X-ray binaries (LMXBs) as the samples, and investigate the morphology of the samples, which focuses on the quality factor, peak frequency of kHz QPOs, and try to infer their physical mechanism. We notice that: (1) The quality factors of upper kHz QPOs are low (2 ~ 20 in general) and increase with the kHz QPO peak frequencies for both Z and Atoll sources. (2) The distribution of quality factor versus frequency for the lower kHz QPOs are quite different between Z and Atoll sources. For most Z source samples, the quality factors of lower kHz QPOs are low (usually lower than 15) and rise steadily with the peak frequencies except for Sco X-1, which drop abruptly at the frequency of about 750 Hz. While for most Atoll sources, the quality factors of lower kHz QPOs are very high (from 2 to 200) and usually have a rising part, a maximum and an abrupt drop. (3) There are three Atoll sources (4U 1728-34, 4U 1636-53 and 4U 1608-52) of displaying very high quality factors for lower kHz QPOs. These three sources have been detected with the spin frequencies and sidebands, in which the source with higher spin frequency presents higher quality factor of lower kHz QPOs and lower difference between sideband frequency and lower kHz QPO frequency.Comment: 8 pages, 8 figures, publishe
    corecore