90 research outputs found

    Friction of the surface plasmon by high-energy particle-hole pairs: Are memory effects important?

    Full text link
    We show that the dynamics of the surface plasmon in metallic nanoparticles damped by its interaction with particle-hole excitations can be modelled by a single degree of freedom coupled to an environment. In this approach, the fast decrease of the dipole matrix elements that couple the plasmon to particle-hole pairs with the energy of the excitation allows a separation of the Hilbert space into low- and high-energy subspaces at a characteristic energy that we estimate. A picture of the spectrum consisting of a collective excitation built from low-energy excitations which interacts with high-energy particle-hole states can be formalised. The high-energy excitations yield an approximate description of a dissipative environment (or "bath") within a finite confined system. Estimates for the relevant timescales establish the Markovian character of the bath dynamics with respect to the surface plasmon evolution for nanoparticles with a radius larger than about 1 nm.Comment: 8 pages, 1 figure; see also cond-mat/070372

    Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis.

    Get PDF
    Age-related macular degeneration (ARMD) is the leading cause of vision loss in developed countries. Hallmarks of the disease are well known; indeed, this pathology is characterized by lipofuscin accumulation, is principally composed of lipid-containing residues of lysosomal digestion. The N-retinyl-N-retinylidene ethanolamine (A2E) retinoid which is thought to be a cytotoxic component for RPE is the best-characterized component of lipofuscin so far. Even if no direct correlation between A2E spatial distribution and lipofuscin fluorescence has been established in aged human RPE, modified forms or metabolites of A2E could be involved in ARMD pathology. Mitogen-activated protein kinase (MAPK) pathways have been involved in many pathologies, but not in ARMD. Therefore, we wanted to analyze the effects of A2E on MAPKs in polarized ARPE19 and isolated mouse RPE cells. We showed that long-term exposure of polarized ARPE19 cells to low A2E dose induces a strong decrease of the extracellular signal-regulated kinases' (ERK1/2) activity. In addition, we showed that A2E, via ERK1/2 decrease, induces a significant decrease of the retinal pigment epithelium-specific protein 65 kDa (RPE65) expression in ARPE19 cells and isolated mouse RPE. In the meantime, we showed that the decrease of ERK1/2 activity mediates an increase of basic fibroblast growth factor (bFGF) mRNA expression and secretion that induces an increase in phagocytosis via a paracrine effect. We suggest that the accumulation of deposits coming from outer segments (OS) could be explained by both an increase of bFGF-induced phagocytosis and by the decrease of clearance by A2E. The bFGF angiogenic protein may therefore be an attractive target to treat ARMD

    Epithelial Sodium Channel-Mediated Sodium Transport Is Not Dependent on the Membrane-Bound Serine Protease CAP2/Tmprss4.

    Get PDF
    The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo

    On quantum mean-field models and their quantum annealing

    Full text link
    This paper deals with fully-connected mean-field models of quantum spins with p-body ferromagnetic interactions and a transverse field. For p=2 this corresponds to the quantum Curie-Weiss model (a special case of the Lipkin-Meshkov-Glick model) which exhibits a second-order phase transition, while for p>2 the transition is first order. We provide a refined analytical description both of the static and of the dynamic properties of these models. In particular we obtain analytically the exponential rate of decay of the gap at the first-order transition. We also study the slow annealing from the pure transverse field to the pure ferromagnet (and vice versa) and discuss the effect of the first-order transition and of the spinodal limit of metastability on the residual excitation energy, both for finite and exponentially divergent annealing times. In the quantum computation perspective this quantity would assess the efficiency of the quantum adiabatic procedure as an approximation algorithm.Comment: 44 pages, 23 figure

    Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea

    Get PDF
    Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian–Triassic and Triassic–Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous ‘disaster faunas’. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems

    Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study

    Get PDF
    Tree shape analyses are frequently used to infer the location of shifts in diversification rate within the Tree of Life. Many studies have supported a causal relationship between shifts and temporally coincident events such as the evolution of “key innovations”. However, the evidence for such relationships is circumstantial. We investigated patterns of diversification during the early evolution of Amniota from the Carboniferous to the Triassic, subjecting a new supertree to analyses of tree balance in order to infer the timing and location of diversification shifts. We investigated how uneven origination and extinction rates drive diversification shifts, and use two case studies (herbivory and an aquatic lifestyle) to examine whether shifts tend to be contemporaneous with evolutionary novelties. Shifts within amniotes tend to occur during periods of elevated extinction, with mass extinctions coinciding with numerous and larger shifts. Diversification shifts occurring in clades that possess evolutionary innovations do not coincide temporally with the appearance of those innovations, but are instead deferred to periods of high extinction rate. We suggest such innovations did not cause increases in the rate of cladogenesis, but allowed clades to survive extinction events. We highlight the importance of examining general patterns of diversification before interpreting specific shifts

    Dynamics of dental evolution in ornithopod dinosaurs.

    Get PDF
    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the 'duck-billed' hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution

    Neurogenic and pericytic plasticity of conditionally immortalized cells derived from renal erythropoietin‐producing cells

    Full text link
    In adult mammals, the kidney is the main source of circulating erythropoietin (Epo), the master regulator of erythropoiesis. In vivo data in mice demonstrated multiple subtypes of interstitial renal Epo-producing (REP) cells. To analyze the differentiation plasticity of fibroblastoid REP cells, we used a transgenic REP cell reporter mouse model to generate conditionally immortalized REP-derived (REPD) cell lines. Under nonpermissive conditions, REPD cells ceased from proliferation and acquired a stem cell-like state, with strongly enhanced hypoxia-inducible factor 2 (HIF-2α), stem cell antigen 1 (SCA-1), and CD133 expression, but also enhanced alpha-smooth muscle actin (αSMA) expression, indicating myofibroblastic signaling. These cells maintained the “on-off” nature of Epo expression observed in REP cells in vivo, whereas other HIF target genes showed a more permanent regulation. Like REP cells in vivo, REPD cells cultured in vitro generated long tunneling nanotubes (TNTs) that aligned with endothelial vascular structures, were densely packed with mitochondria and became more numerous under hypoxic conditions. Although inhibition of mitochondrial oxygen consumption blunted HIF signaling, removal of the TNTs did not affect or even enhance the expression of HIF target genes. Apart from pericytes, REPD cells readily differentiated into neuroglia but not adipogenic, chondrogenic, or osteogenic lineages, consistent with a neuronal origin of at least a subpopulation of REP cells. In summary, these results suggest an unprecedented combination of differentiation features of this unique cell type

    The A1/A2 β-casein genotype of cows, but not their horn status, influences peptide generation during simulated digestion of milk

    Get PDF
    The effect of the horn status of cows on their milk composition and quality is a controversial research topic. In this study, 128 milk samples from 64 horned and 64 disbudded Brown Swiss and Original Braunvieh cows were collected from alpine farms where both horned and disbudded cows were grazing on mountain pastures. The samples were analyzed for their detailed composition and protein digestion in a simulated in vitro digestion (INFOGEST). To exclude probable influences on digestion, the β-CN genotype with its variants A1 and A2 was also included in the study. The effects of horn status and β-CN genotype were investigated in linear mixed models, which included additional influencing random factors such as Original Braunvieh blood proportion, stage of lactation, and farm. Horn status did not have any effect on milk composition or digestion. In contrast, milk from A1A1 cows showed a different protein digestion than milk of A1A2 and A2A2 cows in the gastric phase, including smaller amounts of β-casomorphin(BCM)21-associated peptides and larger amounts of BCM11-associated peptides. Abundances of BCM7 did not differ between β-CN genotypes. At the end of the intestinal phase, the digested milk of A1A1 and A2A2 β-CN genotypes did not differ

    A Digital Endocranial Cast of the Early Paleocene (Puercan) ‘Archaic’ Mammal Onychodectes tisonensis (Eutheria: Taeniodonta)

    Get PDF
    Eutherian mammals—placentals and their closest extinct relatives—underwent a major radiation following the end-Cretaceous extinction, during which they evolved disparate anatomy and established new terrestrial ecosystems. Much about the timing, pace, and causes of this radiation remain unclear, in large part because we still know very little about the anatomy, phylogenetic relationships, and biology of the so-called ‘archaic’ eutherians that prospered during the ~10 million years after the extinction. We describe the first digital endocranial cast of a taeniodont, a bizarre group of eutherians that flourished in the early Paleogene, reconstructed from a computed tomography (CT) scan of a late Puercan (65.4 million year old) specimen of Onychodectes tisonensis that recovered most of the forebrain and midbrain and portions of the inner ear. Notable features of the endocast include long, broad olfactory bulbs, dorsally-positioned rhinal fissures, and a lissencephalic cerebrum. Comparison with other taxa shows that Onychodectes possessed some of the largest olfactory bulbs (relative to cerebral size) of any known mammal. Statistical analysis of modern mammals shows that relative olfactory bulb dimensions are not strongly correlated with body size or fossorial digging for shelter, but relative bulb width is significantly greater in taxa that habitually dig to forage for food. The anatomical description and statistical results allow us to present an ecological model for Onychodectes and similar taeniodonts, in which they are animals of simple behavior that rely on a strong sense of smell to locate buried food before extracting and processing it with their specialized skeletal anatomy
    corecore