431 research outputs found
Influence of correlations on the velocity statistics of scalar granular gases
The free evolution of inelastic particles in one dimension is studied by
means of Molecular Dynamics (MD), of an inelastic pseudo-Maxwell model and of a
lattice model, with emphasis on the role of spatial correlations. We present an
exact solution of the 1d granular pseudo-Maxwell model for the scaling
distribution of velocities and discuss how this model fails to describe
correctly the homogeneous cooling stage of the 1d granular gas. Embedding the
pseudo-Maxwell gas on a lattice (hence allowing for the onset of spatial
correlations), we find a much better agreement with the MD simulations even in
the inhomogeneous regime. This is seen by comparing the velocity distributions,
the velocity profiles and the structure factors of the velocity field.Comment: Latex file: 6 pages, 5 figures (.eps). See also
http://axtnt3.phys.uniroma1.it/Maxwel
Analytical results for generalized persistence properties of smooth processes
We present a general scheme to calculate within the independent interval
approximation generalized (level-dependent) persistence properties for
processes having a finite density of zero-crossings. Our results are especially
relevant for the diffusion equation evolving from random initial conditions,
one of the simplest coarsening systems. Exact results are obtained in certain
limits, and rely on a new method to deal with constrained multiplicative
processes. An excellent agreement of our analytical predictions with direct
numerical simulations of the diffusion equation is found.Comment: 21 pages, 4 figures, to appear in Journal of Physics
Spontaneous Polarisation Build up in a Room Temperature Polariton Laser
We observe the build up of strong (~50%) spontaneous vector polarisation in
emission from a GaN-based polariton laser excited by short optical pulses at
room temperature. The Stokes vector of emitted light changes its orientation
randomly from one excitation pulse to another, so that the time-integrated
polarisation remains zero. This behaviour is completely different to any
previous laser. We interpret this observation in terms of the spontaneous
symmetry breaking in a Bose-Einstein condensate of exciton-polaritons
Melatonin prevents chemical-induced Haemopoietic cell death
Melatonin (MEL), a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 μM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death. © 2014 by the authors; licensee MDPI, Basel, Switzerland
Brownian forces in sheared granular matter
We present results from a series of experiments on a granular medium sheared
in a Couette geometry and show that their statistical properties can be
computed in a quantitative way from the assumption that the resultant from the
set of forces acting in the system performs a Brownian motion. The same
assumption has been utilised, with success, to describe other phenomena, such
as the Barkhausen effect in ferromagnets, and so the scheme suggests itself as
a more general description of a wider class of driven instabilities.Comment: 4 pages, 5 figures and 1 tabl
Steady state properties of a mean field model of driven inelastic mixtures
We investigate a Maxwell model of inelastic granular mixture under the
influence of a stochastic driving and obtain its steady state properties in the
context of classical kinetic theory. The model is studied analytically by
computing the moments up to the eighth order and approximating the
distributions by means of a Sonine polynomial expansion method. The main
findings concern the existence of two different granular temperatures, one for
each species, and the characterization of the distribution functions, whose
tails are in general more populated than those of an elastic system. These
analytical results are tested against Monte Carlo numerical simulations of the
model and are in general in good agreement. The simulations, however, reveal
the presence of pronounced non-gaussian tails in the case of an infinite
temperature bath, which are not well reproduced by the Sonine method.Comment: 23 pages, 10 figures, submitted for publicatio
Engineered Sleeping Beauty Transposon as Efficient System to Optimize Chimp Adenoviral Production
Sleeping Beauty (SB) is the first DNA transposon employed for efficient transposition in vertebrate cells, opening new applications for genetic engineering and gene therapies. A transposon-based gene delivery system holds the favourable features of non-viral vectors and an attractive safety profile. Here, we employed SB to engineer HEK293 cells for optimizing the production of a chimpanzee Adenovector (chAd) belonging to the Human Mastadenovirus C species. To date, chAd vectors are employed in several clinical settings for infectious diseases, last but not least COVID-19. A robust, efficient and quick viral vector production could advance the clinical application of chAd vectors. To this aim, we firstly swapped the hAd5 E1 with chAd-C E1 gene by using the CRISPR/Cas9 system. We demonstrated that in the absence of human Ad5 E1, chimp Ad-C E1 gene did not support HEK293 survival. To improve chAd-C vector production, we engineered HEK293 cells to stably express the chAd-C precursor terminal protein (ch.pTP), which plays a crucial role in chimpanzee Adenoviral DNA replication. The results indicate that exogenous ch.pTP expression significantly ameliorate the packaging and amplification of recombinant chAd-C vectors thus, the engineered HEK293ch.pTP cells could represent a superior packaging cell line for the production of these vectors
- …