279 research outputs found

    FinDer v.2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization

    Get PDF
    Recent studies suggest that small and large earthquakes nucleate similarly, and that they often have indistinguishable seismic waveform onsets. The characterization of earthquakes in real time, such as for earthquake early warning, therefore requires a flexible modeling approach that allows a small earthquake to become large as fault rupture evolves over time. Here, we present a modeling approach that generates a set of output parameters and uncertainty estimates that are consistent with both small/moderate (≀M6.5) and large earthquakes (>M6.5) as is required for a robust parameter interpretation and shaking forecast. Our approach treats earthquakes over the entire range of magnitudes (>M2) as finite line-source ruptures, with the dimensions of small earthquakes being very small (<100 m) and those of large earthquakes exceeding several tens to hundreds of kilometres in length. The extent of the assumed line source is estimated from the level and distribution of high-frequency peak acceleration amplitudes observed in a local seismic network. High-frequency motions are well suited for this approach, because they are mainly controlled by the distance to the rupturing fault. Observed ground-motion patterns are compared with theoretical templates modeled from empirical ground-motion prediction equations to determine the best line source and uncertainties. Our algorithm extends earlier work by Böse et al. for large finite-fault ruptures. This paper gives a detailed summary of the new algorithm and its offline performance for the 2016 M7.0 Kumamoto, Japan and 2014 M6.0 South Napa, California earthquakes, as well as its performance for about 100 real-time detected local earthquakes (2.2 ≀ M ≀ 5.1) in California. For most events, both the rupture length and the strike are well constrained within a few seconds (<10 s) of the event origin. In large earthquakes, this could allow for providing warnings of up to several tens of seconds. The algorithm could also be useful for resolving fault plane ambiguities of focal mechanisms and identification of rupturing faults for earthquakes as small as M2.5

    Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique

    Get PDF
    BACKGROUND: Congenital heart defects are the leading non-infectious cause of death in children. Genetic studies in the mouse have been crucial to uncover new genes and signaling pathways associated with heart development and congenital heart disease. The identification of murine models of congenital cardiac malformations in high-throughput mutagenesis screens and in gene-targeted models is hindered by the opacity of the mouse embryo. RESULTS: We developed and optimized a novel method for high-throughput multi-embryo magnetic resonance imaging (MRI). Using this approach we identified cardiac malformations in phosphatidylserine receptor (Ptdsr) deficient embryos. These included ventricular septal defects, double-outlet right ventricle, and hypoplasia of the pulmonary artery and thymus. These results indicate that Ptdsr plays a key role in cardiac development. CONCLUSIONS: Our novel multi-embryo MRI technique enables high-throughput identification of murine models for human congenital cardiopulmonary malformations at high spatial resolution. The technique can be easily adapted for mouse mutagenesis screens and, thus provides an important new tool for identifying new mouse models for human congenital heart diseases

    The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal

    Get PDF
    BACKGROUND: Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr) on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. RESULTS: Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr (-/-) mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. CONCLUSION: Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance

    Changes in wave climate over the northwest European shelf seas during the last 12,000 years

    No full text
    Because of the depth attenuation of wave orbital velocity, wave-induced bed shear stress is much more sensitive to changes in total water depth than tidal-induced bed shear stress. The ratio between wave- and tidal-induced bed shear stress in many shelf sea regions has varied considerably over the recent geological past because of combined eustatic changes in sea level and isostatic adjustment. In order to capture the high-frequency nature of wind events, a two-dimensional spectral wave model is here applied at high temporal resolution to time slices from 12 ka BP to present using paleobathymetries of the NW European shelf seas. By contrasting paleowave climates and bed shear stress distributions with present-day conditions, the model results demonstrate that, in regions of the shelf seas that remained wet continuously over the last 12,000 years, annual root-mean-square (rms) and peak wave heights increased from 12 ka BP to present. This increase in wave height was accompanied by a large reduction in the annual rms wave- induced bed shear stress, primarily caused by a reduction in the magnitude of wave orbital velocity penetrating to the bed for increasing relative sea level. In regions of the shelf seas which remained wet over the last 12,000 years, the annual mean ratio of wave- to (M-2) tidal-induced bed shear stress decreased from 1 (at 12 ka BP) to its present-day value of 0.5. Therefore compared to present- day conditions, waves had a more important contribution to large-scale sediment transport processes in the Celtic Sea and the northwestern North Sea at 12 ka BP

    The {\eta}'-carbon potential at low meson momenta

    Full text link
    The production of ηâ€Č\eta^\prime mesons in coincidence with forward-going protons has been studied in photon-induced reactions on 12^{12}C and on a liquid hydrogen (LH2_2) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The ηâ€Č\eta^\prime mesons have been identified via the ηâ€Č→π0π0η→6Îł\eta^\prime\rightarrow \pi^0 \pi^0\eta \rightarrow 6 \gamma decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF2_2 array at polar angles of 2∘≀Ξp≀11∘2^{\circ} \le \theta _{p} \le 11^{\circ}. Under these kinematic constraints the ηâ€Č\eta^\prime mesons are produced with relatively low kinetic energy (≈\approx 150 MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the ηâ€Č\eta^\prime-carbon potential at low meson momenta by comparing with collision model calculations of the ηâ€Č\eta^\prime kinetic energy distribution and excitation function. Fitting the latter data for ηâ€Č\eta^\prime mesons going backwards in the center-of-mass system yields a potential depth of V = −-(44 ±\pm 16(stat)±\pm15(syst)) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average ηâ€Č\eta^\prime momenta of ≈\approx 1.1 GeV/cc. Within the experimental uncertainties, there is no indication of a momentum dependence of the ηâ€Č\eta^\prime-carbon potential. The LH2_2 data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for ηâ€Č\eta^\prime photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with arXiv:1608.0607

    Experimental constraints on the ω\omega-nucleus real potential

    Get PDF
    In a search for ω\omega mesic states, the production of ω\omega-mesons in coincidence with forward going protons has been studied in photon induced reactions on 12^{12}C for incident photon energies of 1250 - 3100 MeV. The π0Îł\pi^0 \gamma pairs from decays of bound or quasi-free ω\omega-mesons have been measured with the CBELSA/TAPS detector system in coincidence with protons registered in the MiniTAPS forward array. Structures in the total energy distribution of the π0Îł\pi^0 \gamma pairs, which would indicate the population and decay of bound ω 11\omega~^{11}B states, are not observed. The π0Îł\pi^0 \gamma cross section of 0.3 nb/MeV/sr observed in the bound state energy regime between -100 and 0 MeV may be accounted for by yield leaking into the bound state regime because of the large in-medium width of the ω\omega-meson. A comparison of the measured total energy distribution with calculations suggests the real part V0V_0 of the ω 11\omega~^{11}B potential to be small and only weakly attractive with V0(ρ=ρ0)=−15±V_0(\rho=\rho_0) = -15\pm 35(stat) ±\pm20(syst) MeV in contrast to some theoretical predictions of attractive potentials with a depth of 100 - 150 MeV.Comment: 13 pages, 8 figure

    FinDer v.2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization

    Get PDF
    Recent studies suggest that small and large earthquakes nucleate similarly, and that they often have indistinguishable seismic waveform onsets. The characterization of earthquakes in real time, such as for earthquake early warning, therefore requires a flexible modeling approach that allows a small earthquake to become large as fault rupture evolves over time. Here, we present a modeling approach that generates a set of output parameters and uncertainty estimates that are consistent with both small/moderate (≀M6.5) and large earthquakes (>M6.5) as is required for a robust parameter interpretation and shaking forecast. Our approach treats earthquakes over the entire range of magnitudes (>M2) as finite line-source ruptures, with the dimensions of small earthquakes being very small (<100 m) and those of large earthquakes exceeding several tens to hundreds of kilometres in length. The extent of the assumed line source is estimated from the level and distribution of high-frequency peak acceleration amplitudes observed in a local seismic network. High-frequency motions are well suited for this approach, because they are mainly controlled by the distance to the rupturing fault. Observed ground-motion patterns are compared with theoretical templates modeled from empirical ground-motion prediction equations to determine the best line source and uncertainties. Our algorithm extends earlier work by Böse et al. for large finite-fault ruptures. This paper gives a detailed summary of the new algorithm and its offline performance for the 2016 M7.0 Kumamoto, Japan and 2014 M6.0 South Napa, California earthquakes, as well as its performance for about 100 real-time detected local earthquakes (2.2 ≀ M ≀ 5.1) in California. For most events, both the rupture length and the strike are well constrained within a few seconds (<10 s) of the event origin. In large earthquakes, this could allow for providing warnings of up to several tens of seconds. The algorithm could also be useful for resolving fault plane ambiguities of focal mechanisms and identification of rupturing faults for earthquakes as small as M2.5

    Photoproduction of eta mesons from the neutron: cross sections and double polarization observable E

    Full text link
    Photoproduction of η\eta mesons from neutrons} \abstract{Results from measurements of the photoproduction of η\eta mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the η→3π0→6Îł\eta\to3\pi^{0}\to6\gamma decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of Îłn→nη\gamma n\rightarrow n\eta. The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow P11P_{11} state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable EE. Both data sets together were also used to extract the helicity dependent cross sections σ1/2\sigma_{1/2} and σ3/2\sigma_{3/2}. The narrow structure in the excitation function of Îłn→nη\gamma n\rightarrow n\eta appears associated with the helicity-1/2 component of the reaction

    First measurement of the helicity asymmetry for Îłp→pπ0\gamma p\rightarrow p\pi^0 in the resonance region

    Full text link
    The first measurement of the helicity dependence of the photoproduction cross section of single neutral pions off protons is reported for photon energies from 600 to 2300\,MeV, covering nearly the full solid angle. The data are compared to predictions from the SAID, MAID, and BnGa partial wave analyses. Strikingly large differences between data and predictions are observed which are traced to differences in the helicity amplitudes of well known and established resonances. Precise values for the helicity amplitudes of several resonances are reported

    The polarization observables T, P, and H and their impact on Îłp→pπ0\gamma p \to p\pi^0 multipoles

    Full text link
    Data on the polarization observables T, P, and H for the reaction Îłp→pπ0\gamma p\to p\pi^0 are reported. Compared to earlier data from other experiments, our data are more precise and extend the covered range in energy and angle substantially. The results were extracted from azimuthal asymmetries measured using a transversely polarized target and linearly polarized photons. The data were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS detector. Within the Bonn-Gatchina partial wave analysis, the new polarization data lead to a significant narrowing of the error band for the multipoles for neutral-pion photoproduction
    • 

    corecore