57 research outputs found

    Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies

    Get PDF
    The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health

    The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp <it>Chelonus inanitus </it>(Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences.</p> <p>Results</p> <p>About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein.</p> <p>An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the <it>Chelonus </it>lineage. Venom components specific to <it>C. inanitus </it>included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins.</p> <p>Conclusions</p> <p>The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of <it>C. inanitus </it>appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.</p

    CD40L-expressing CD4+ T cells prime adipose-derived stromal cells to produce inflammatory chemokines

    No full text
    International audienceThe therapeutic potential of culture-adapted adipose-derived stromal cells (ASCs) is largely related to their production of immunosuppressive factors that are inducible in vitro by priming with inflammatory stimuli, in particular tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ). In vivo, obesity is associated with chronic inflammation of white adipose tissue, including accumulation of neutrophils, infiltration by IFNγ/TNFα-producing immune cells, and ASC dysfunction. In the current study, we identified in obese patients a simultaneous upregulation of CD40Lin the adipose tissue stroma vascular fraction (AT-SVF), correlated with the Th1 gene signature, and an overexpression of CD40 by native ASCs. Moreover, activated CD4+ T cells upregulated CD40 on culture-expanded ASCs and triggered their production of IL-8 in a CD40L-dependent manner, leading to an increased capacity to recruit neutrophils. Finally, activation of ASCs by sCD40L or CD40L-expressing CD4+ T cells relies on both canonical and non-canonical NF-κB pathways, and IL-8 was found to be coregulated with NF-κB family members in AT-SVF. These data identify the CD40-CD40L axis as a priming mechanism of ASCs, able to modulate their cross talk with neutrophils in an inflammatory context, and their functional capacity for therapeutic applications

    TheL 2 norm of Bézier curves

    No full text

    Atomic structure of a nudivirus occlusion body protein determined from a 70-year-old crystal sample

    No full text
    International audienceInfectious protein crystals are an essential part of the viral lifecycle for doublestranded DNA Baculoviridae and double-stranded RNA cypoviruses. These viral protein crystals, termed occlusion bodies or polyhedra, are dense protein assemblies that form a crystalline array, encasing newly formed virions. Here, using X-ray crystallography we determine the structure of a polyhedrin from Nudiviridae. This double-stranded DNA virus family is a sister-group to the baculoviruses, whose members were thought to lack occlusion bodies. The 70year-old sample contains a well-ordered lattice formed by a predominantly αhelical building block that assembles into a dense, highly interconnected protein crystal. The lattice is maintained by extensive hydrophobic and electrostatic interactions, disulfide bonds, and domain switching. The resulting lattice is resistant to most environmental stresses. Comparison of this structure to baculovirus or cypovirus polyhedra shows a distinct protein structure, crystal space group, and unit cell dimensions, however, all polyhedra utilise common principles of occlusion body assembly.Viral occlusion bodies (OBs), also called polyhedra, are stable protein crystals that encapsulate newly assembled virions within virus-infected cells 1 . They most commonly occur in larvae infected with insect viruses from the Baculoviridae, Reoviridae, and Poxviridae families and function as the environmentally persistent infectious form of these viruses. These OBs were first described in the early 20th century where they were depicted to be highly reflective and have a polyhedron geometry (formed by flat polygons with straight edges and vertices) 2 . As technologies became available, electron microscopy was used to demonstrate that these OBs contained virus particles. Isolation of significant amounts of OBs allowed early proteomics approaches to identify that they were predominantly formed from a single protein which was subsequently partially sequenced 3-6 . Genome sequencing was then used to identify full-length polyhedrin protein sequences for recombinant expression.Cells infected with these insect viruses produce polyhedra that range in size from 0.2 to 10 microns and consist primarily of a single 25-33 kDa polypeptide polyhedrin 1,4 . The crystalline OB protein matrix protects the embedded virions from environmental conditions including dehydration, freeze-thaw, and high temperatures 4,7 . In addition, polyhedra resist proteolytic digestion by enzymes and chemical disruption by chaotropic agents, concentrated acids, detergents, and organic solvents 7 . Despite their resistance to many environmental conditions, they readily dissolve at pH &gt;10.5 7-9 . This dissolution under alkali pH allows virion release and infection in the alkaline midgut of insect larvae which is one of the main routes of viral infection 2,4,7-9 .</div
    • …
    corecore