693 research outputs found
Higher Accuracy for Bayesian and Frequentist Inference: Large Sample Theory for Small Sample Likelihood
Recent likelihood theory produces -values that have remarkable accuracy
and wide applicability. The calculations use familiar tools such as maximum
likelihood values (MLEs), observed information and parameter rescaling. The
usual evaluation of such -values is by simulations, and such simulations do
verify that the global distribution of the -values is uniform(0, 1), to high
accuracy in repeated sampling. The derivation of the -values, however,
asserts a stronger statement, that they have a uniform(0, 1) distribution
conditionally, given identified precision information provided by the data. We
take a simple regression example that involves exact precision information and
use large sample techniques to extract highly accurate information as to the
statistical position of the data point with respect to the parameter:
specifically, we examine various -values and Bayesian posterior survivor
-values for validity. With observed data we numerically evaluate the various
-values and -values, and we also record the related general formulas. We
then assess the numerical values for accuracy using Markov chain Monte Carlo
(McMC) methods. We also propose some third-order likelihood-based procedures
for obtaining means and variances of Bayesian posterior distributions, again
followed by McMC assessment. Finally we propose some adaptive McMC methods to
improve the simulation acceptance rates. All these methods are based on
asymptotic analysis that derives from the effect of additional data. And the
methods use simple calculations based on familiar maximizing values and related
informations. The example illustrates the general formulas and the ease of
calculations, while the McMC assessments demonstrate the numerical validity of
the -values as percentage position of a data point. The example, however, is
very simple and transparent, and thus gives little indication that in a wide
generality of models the formulas do accurately separate information for almost
any parameter of interest, and then do give accurate -value determinations
from that information. As illustration an enigmatic problem in the literature
is discussed and simulations are recorded; various examples in the literature
are cited.Comment: Published in at http://dx.doi.org/10.1214/07-STS240 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Model of Low-pass Filtering of Local Field Potentials in Brain Tissue
Local field potentials (LFPs) are routinely measured experimentally in brain
tissue, and exhibit strong low-pass frequency filtering properties, with high
frequencies (such as action potentials) being visible only at very short
distances (10~) from the recording electrode. Understanding
this filtering is crucial to relate LFP signals with neuronal activity, but not
much is known about the exact mechanisms underlying this low-pass filtering. In
this paper, we investigate a possible biophysical mechanism for the low-pass
filtering properties of LFPs. We investigate the propagation of electric fields
and its frequency dependence close to the current source, i.e. at length scales
in the order of average interneuronal distance. We take into account the
presence of a high density of cellular membranes around current sources, such
as glial cells. By considering them as passive cells, we show that under the
influence of the electric source field, they respond by polarisation, i.e.,
creation of an induced field. Because of the finite velocity of ionic charge
movement, this polarization will not be instantaneous. Consequently, the
induced electric field will be frequency-dependent, and much reduced for high
frequencies. Our model establishes that with respect to frequency attenuation
properties, this situation is analogous to an equivalent RC-circuit, or better
a system of coupled RC-circuits. We present a number of numerical simulations
of induced electric field for biologically realistic values of parameters, and
show this frequency filtering effect as well as the attenuation of
extracellular potentials with distance. We suggest that induced electric fields
in passive cells surrounding neurons is the physical origin of frequency
filtering properties of LFPs.Comment: 10 figs, revised tex file and revised fig
On the flexibility of the design of Multiple Try Metropolis schemes
The Multiple Try Metropolis (MTM) method is a generalization of the classical
Metropolis-Hastings algorithm in which the next state of the chain is chosen
among a set of samples, according to normalized weights. In the literature,
several extensions have been proposed. In this work, we show and remark upon
the flexibility of the design of MTM-type methods, fulfilling the detailed
balance condition. We discuss several possibilities and show different
numerical results
Diffusion of hydrogen in crystalline silicon
The coefficient of diffusion of hydrogen in crystalline silicon is calculated
using tight-binding molecular dynamics. Our results are in good quantitative
agreement with an earlier study by Panzarini and Colombo [Phys. Rev. Lett. 73,
1636 (1994)]. However, while our calculations indicate that long jumps dominate
over single hops at high temperatures, no abrupt change in the diffusion
coefficient can be observed with decreasing temperature. The (classical)
Arrhenius diffusion parameters, as a consequence, should extrapolate to low
temperatures.Comment: 4 pages, including 5 postscript figures; submitted to Phys. Rev. B
Brief Repor
On Second-Order Monadic Monoidal and Groupoidal Quantifiers
We study logics defined in terms of second-order monadic monoidal and
groupoidal quantifiers. These are generalized quantifiers defined by monoid and
groupoid word-problems, equivalently, by regular and context-free languages. We
give a computational classification of the expressive power of these logics
over strings with varying built-in predicates. In particular, we show that
ATIME(n) can be logically characterized in terms of second-order monadic
monoidal quantifiers
Seismological structure of the 1.8 Ga Trans-Hudson Orogen of North America
Precambrian tectonic processes are debated: what was the nature and scale of orogenic events on the younger, hotter, and more ductile Earth? Northern Hudson Bay records the Paleoproterozoic collision between the Western Churchill and Superior plates—the ∼1.8 Ga Trans-Hudson Orogeny (THO)—and is an ideal locality to study Precambrian tectonic structure. Integrated field, geochronological, and thermobarometric studies suggest that the THO was comparable to the present-day Himalayan-Karakoram-Tibet Orogen (HKTO). However, detailed understanding of the deep crustal architecture of the THO, and how it compares to that of the evolving HKTO, is lacking. The joint inversion of receiver functions and surface wave data provides new Moho depth estimates and shear velocity models for the crust and uppermost mantle of the THO. Most of the Archean crust is relatively thin (∼39 km) and structurally simple, with a sharp Moho; upper-crustal wave speed variations are attributed to postformation events. However, the Quebec-Baffin segment of the THO has a deeper Moho (∼45 km) and a more complex crustal structure. Observations show some similarity to recent models, computed using the same methods, of the HKTO crust. Based on Moho character, present-day crustal thickness, and metamorphic grade, we support the view that southern Baffin Island experienced thickening during the THO of a similar magnitude and width to present-day Tibet. Fast seismic velocities at >10 km below southern Baffin Island may be the result of partial eclogitization of the lower crust during the THO, as is currently thought to be happening in Tibet
Enhancing students’ motivation to learn software engineering programming techniques: a collaborative and social interaction approach
To motivate students to study advanced programming techniques, including the use of architectural styles such as the model–view–controller pattern, we have con-ducted action research upon a project based-learning approach. In addition to collabo-ration, the approach includes students’ searching and analysis of scientific documents and their involvement in communities of practice outside academia. In this paper, we report the findings of second action research cycle, which took place throughout the fourth semester of a six-semester program. As with the previous cycle during the pre-vious academic year, students did not satisfactorily achieve expected learning out-comes. More groups completed the assigned activities, but results continue to reflect poor engagement in the communities of practice and very low performance in other learning tasks. From the collected data we have identified new approaches and recom-mendations for subsequent research.Fundação para a Ciência e Tecnologia (FCT), Portugal, for Ph.D. Grants SFRH/BD/91309/2012 and SFRH/BD/87815/201
Experimental and computational study of trace element distribution between orthopyroxene and anhydrous silicate melts: substitution mechanisms and the effect of iron
Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO-MgO-A
The Effect of Auditory Distraction on the Useful Field of View in Hearing Impaired Individuals and its implications for driving
This study assessed whether the increased demand of listening in hearing impaired individuals exacerbates the detrimental impact of auditory distraction on a visual task (useful field of view test), relative to normally hearing listeners. Auditory distraction negatively affects this visual task, which is linked with various driving performance outcomes. Hearing impaired and normally hearing participants performed useful field of view testing with and without a simultaneous listening task. They also undertook a cognitive test battery. For all participants, performing the visual and auditory tasks together reduced performance on each respective test. For a number of subtests, hearing impaired participants showed poorer visual task performance, though not to a statistically significant extent. Hearing impaired participants were significantly poorer at a reading span task than normally hearing participants and tended to score lower on the most visually complex subtest of the visual task in the absence of auditory task engagement. Useful field of view performance is negatively affected by auditory distraction, and hearing loss may present further problems, given the reductions in visual and cognitive task performance suggested in this study. Suggestions are made for future work to extend this study, given the practical importance of the findings
- …
