567 research outputs found

    Improvement of current-control induced by oxide crenel in very short field-effect-transistor

    Full text link
    A 2D quantum ballistic transport model based on the non-equilibrium Green's function formalism has been used to theoretically investigate the effects induced by an oxide crenel in a very short (7 nm) thin-film metal-oxide-semiconductor-field-effect-transistor. Our investigation shows that a well adjusted crenel permits an improvement of on-off current ratio Ion/Ioff of about 244% with no detrimental change in the drive current Ion. This remarkable result is explained by a nontrivial influence of crenel on conduction band-structure in thin-film. Therefore a well optimized crenel seems to be a good solution to have a much better control of short channel effects in transistor where the transport has a strong quantum behavior

    Less-simplified models of dark matter for direct detection and the LHC

    Get PDF
    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators’ mass. We derive the strongest limits for combinations of vector + scalar, vector + “squark”, and “squark” + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances

    The Plateau de Bure Neutron Monitor: design, operation and Monte-Carlo simulation

    Full text link
    This paper describes the Plateau de Bure Neutron Monitor (PdBNM), an instrument providing continuous ground-level measurements of atmospheric secondary neutron flux resulting from the interaction of primary cosmic rays with the Earth's atmosphere. The detector is installed on the Plateau de Bure (Devoluy mountains, south of France, latitude North 44{\deg} 38' 02", longitude East 5{\deg} 54' 26", altitude 2555 m) as a part of the ASTEP Platform (Altitude Single-event effects Test European Platform), a permanent installation dedicated to the study of the impact of terrestrial natural radiation on microelectronics circuit reliability. The present paper reports the neutron monitor design, its operation since August 2008 and its complete numerical simulation using the Monte Carlo codes GEANT4 and MCNPX. We particularly detail the computation of the neutron monitor detection response function for neutrons, muons, protons and pions, the comparison between GEANT4 and MCNPX numerical results and the evaluation of the PdBNM counting rate a function of both the nature and flux of the incident atmospheric particles.Comment: 37 pages, 14 figures, 5 tables; numerical error in GEANT4 particle sourse corrected, section 4.4 was significantly revised. Submitted to IEEE Transactions on Nuclear Scienc

    Human immunodeficiency virus type I-specific CD8+ T cell subset abnormalities in chronic infection persist through effective antiretroviral therapy

    Get PDF
    Background: Effective highly active antiretroviral therapy (HAART) reduces human immunodeficiency virus (HIV) replication, restores CD4 +T lymphocyte counts and greatly reduces the incidence of opportunistic infections. While this demonstrates improved generalized immune function, rapid rebound to pre-treatment viral replication levels following treatment interruption indicates little improvement in immune control of HIV replication. The extent to which HAART can normalize HIV-specific CD8 +T cell function over time in individuals with chronic infection remains an important unresolved issue. In this study, we evaluated the magnitude, general specificity and character of HIV specific CD8 +T cell responses at four time points across 2-9 years in 2 groups of chronically infected individuals separated on the basis of either effective antiretroviral suppression or ongoing replication of HIV.Methods: Peripheral blood mononuclear cells (PBMC) were stimulated with overlapping 15mer peptides spanning HIV Gag, Pol, Env and Nef proteins. Cells producing interferon-γ (IFN-γ) or interleukin-2 (IL-2) were enumerated by ELISPOT and phenotyped by flow cytometry.Results and Conclusions: The magnitude of the HIV-specific CD8 +T cell response ranged from < .01 to approximately 1.0% of PBMC and was significantly greater in the group with detectable viral replication. Stronger responses reflected higher numbers of CD8 +CD45RA -effector memory cells producing IFN-γ, but not IL-2. Magnitude, general specificity and character of the HIV-specific CD8 +T cell response changed little over the study period. While antiretroviral suppression of HIV in chronic infection reduces HIV-specific CD8 +T cell response magnitude in the short term, it had no significant effect on response character over periods up to 9 years
    corecore