902 research outputs found

    Torque-ripple minimization in modular permanent-magnet brushless machines

    Get PDF
    This paper discusses the suitability of four-phase, five-phase, and six-phase modular machines, for use in applications where servo characteristics and fault tolerance are key requirements. It is shown that an optimum slot number and pole number combination exists, for which excellent servo characteristics could be achieved, under healthy operating conditions, with minimum effects on the power density of the machine. To eliminate torque ripple due to residual cogging and various fault conditions, the paper describes a novel optimal torque control strategy for the modular permanent-magnet machines operating in both constant torque and constant power modes. The proposed control strategy enables ripple-free torque operation to be achieved, while minimizing the copper loss under voltage and current constraints. The utility of the proposed strategy is demonstrated by computer simulations on a four-phase fault-tolerant drive system

    Optimal torque control of fault-tolerant permanent magnet brushloss machines

    Get PDF
    Describes a novel optimal torque control strategy for fault-tolerant permanent magnet brushless ac drives operating in both constant torque and constant power modes. The proposed control strategy enables ripple-free torque operation to be achieved while minimizing the copper loss under voltage and current constraints. The utility of the proposed strategy is demonstrated by computer simulations on a five-phase fault-tolerant drive system

    Effect of optimal torque control on rotor loss of fault-tolerant permanent-magnet brushless machines

    Get PDF
    A faulted phase in a fault-tolerant permanent-magnet brushless machine can result in significant torque ripple. However, this can be minimized by using an appropriate optimal torque control strategy. Inevitably, however, this results in significant time harmonics in the phase current waveforms, which when combined with inherently large space harmonics, can result in a significant eddy-current loss in the permanent magnets on the rotor. This paper describes the optimal torque control strategy which has been adopted, and discusses its effect on the eddy-current loss in the permanent magnets of four-, five-, and six-phase fault-tolerant machines

    Powder alignment system for anisotropic bonded NdFeB Halbach cylinders

    Get PDF
    A Halbach cylinder, fabricated from pre-magnetized sintered NdFeB magnet segments, is proposed for the powder aligning system during the compression or injection moulding of anisotropic bonded Halbach oriented NdFeB ring magnets. The influence of leading design parameters of the powder aligning system, viz. the number of magnet segments per pole, their axial length and radial thickness, and their clearance from the mould, is investigated by finite element analysis, and validated experimentall

    Analysis of anisotropic bonded NdFeB Halbach cylinders accounting for partial powder alignment

    Get PDF
    An analytical technique is developed for predicting the performance of a bonded Halbach oriented anisotropic magnet, with due account of partial alignment of the NdFeB powder during injection molding. The predicted performance of a 12-pole injection molded, Halbach oriented magnet is compared with measuremen

    Rotor eddy-current loss in permanent magnet brushless machines

    Get PDF
    This paper presents an analysis of the rotor eddy-current loss in modular and conventional topologies of permanent magnet brushless machine. The loss is evaluated both analytically and by time-stepped finite-element analysis, and it is shown that it can be significant in both machine topologies. It is also shown that the loss can be reduced significantly by segmenting the magnets

    The effect of Duffing-type non-linearities and Coulomb damping on the response of an energy harvester to random excitations

    Get PDF
    Linear energy harvesters can only produce useful amounts of power when excited close to their natural frequency. Due to the uncertain nature of ambient vibrations, it has been hypothesised that such devices will perform poorly in real-world applications. To improve performance, it has been suggested that the introduction of non-linearities into such devices may extend the bandwidth over which they perform effectively. In this study, a magnetic levitation device with non-linearities similar to the Duffing oscillator is considered. The governing equations of the device are formed in which the effects of friction are considered. Analytical solutions are used to explore the effect that friction can have on the system when it is under harmonic excitations. Following this, a numerical model is formed. A differential evolution algorithm is used alongside experimental data to identify the relevant parameters of the device. The model is then validated using experimental data. Monte Carlo simulations are then used to analyse the effect of coulomb damping and Duffing-type non-linearities when the device is subjected to broadband white noise and coloured noise excitations. </jats:p
    corecore